Jigsaw Images

Data-Free Universal Adversarial Perturbation and Black-Box Attack

Towards strictly data-free untargeted UAP, our work proposes to exploit artificial Jigsaw images as the training samples, demonstrating competitive performance. We further investigate the possibility of exploiting the UAP for a data-free black-box attack which is arguably the most practical yet challenging threat model. We demonstrate that there exists optimization-free repetitive patterns which can successfully attack deep models.