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Agenda

Overview of adversarial machine learning:
1. Adversarial Examples

2. Adversarial attack

3. Adversarial defense

Our work:

4. UAP with class discrimination
5. Understanding UAP

6. Universal deep hiding

/. Towards a unified perspective
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Deep Learning is Awesome
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Balance a pole on a cart
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Swing up a pendulum.
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Overview of Adversarial Machine Learning

Adversarial machine learning: a technique attempting to fool models through malicious input.

1. Practical relevance: Can we trust the model for security sensitive applications?

2. Theoretical relevance: Understanding adversarial examples might give us insights about how deep
neural networks work
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The Basics
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Adversarial Examples

Deep Neural Networks are sensitive to small perturbations in the image, which can lead to
misclassifications. These changes are mostly imperceptible for human observers.

+ .007 x

z ign(Val(0.2.0)  ion(v,.0(0,3,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

e Perturbations of small magnitude
e Specially crafted through optimization techniques
e Imperceptible for humans

[1] Explaining and Harnessing Adversarial Examples; ICLR 2015
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Objective

Adversarial Attack: Finding a small perturbation, to misclassify a sample

C(aj 4+ 5) + C’(a;) Misclassification
subjectto D(z,x + 6) < ¢

The perturbation is smaller than magnitude €
Some distance metric L1, L2, Linf

L + 0 - [O, 1] Obey image range
X 0 T+ 0

"suit" 28.2% confidence “mosquito net" 4.7% confidence "wig" 29.0% confidence
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Distance metrics

6=z —a; H(SHp:(Z?ﬂ 6;17) "

L Measures the number of coordinates i such that =; #
0 Corresponds to the number of pixels that have been altered in an image.

L Measures the standard Euclidean (root-mean-square) distance between x and x’. The L2 distance
2 can remain small when there are many small changes to many pixels.

Measures the maximum change to any of the coordinates: ||z — 2/||cc = max(|z1 — 2], ..., |z, — x])

Loo For images, we can imagine there is a maximum budget, and each pixel is allowed to be changed
by up to this limit, with no limit on the number of pixels that are modified.

LO metric is rarely used. More and more papers are adopting the Linf metric for evaluation.
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Adversarial Examples: Attack categories

Perturbation

______________________________________________________________________________________________________________________________________________________________________________

White-Box Attack Black-Box Attack
An attacker has full knowledge about the target An attacker has no knowledge about the target
! Targeted Attack
Untarggted Attack ; The attack succeeds, if the target model makes a
The attack succeeds, if the target model makes a misclassification which was specified beforehand

misclassification

______________________________________________________________________________________________________________________________________________________________________________
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White-box vs. Black-box

about:
e Modele.g.

o number of layers

e Training algorithm e.g
o SGD, ADAM etc.
o Learning Rate

e Training data

e Model parameters

o type of neural network

ﬂjversary has FULL knowledgA

/

P

WHITE -BOX

[ESTING

Adversary has NO knowledge
about the model, training
algorithm, training data, model
parameters etc.

Commonly it is only assumed
that the adversary can query the
model

Note: Different works define

their “black-box” slightly
different, so stay critical!

BLAGK -BOX
TESTING

[ERO KNOWLEDGE

-

Adversary has SOME
information.

E.g. the adversary knows the
network architecture, but no
information about the exact
parameters.

\_

~

v

GRAY -BOX
[ESTING

yOME KNOWLEDGE
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Untargeted vs. Targeted

Cat

;( |
_ 5 Plane
>_< o House CI:ar |
/ Hgi;i | |
Untargeted Targeted
The misclassified class can be any other  The misclassified class can only be the
than the currently classified class target class

In this example: any class other than
dog, such as cat, car...

Cat
Plane
House

Bird |
Horse |

In this example: target class = Cat

Plane

Car |
House |
Bird |
Horse |
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Adversarial Attacks
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The FGSM attack

Fast Gradient Sign Method (FGSM) [1]
Stepping one step of step size € into the gradient direction

' =x+e€- sign(VoL(0,x,y4))
Pro: Fast Con: Less effective L=CF

Fixed

Logit Vector

L

9

€. magnitude

[1] Explaining and Harnessing Adversarial Examples; ICLR 2015 13
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The PGD-attack
a

Projected Gradient Descent (PGD) A
Iteratively apply FGSM with step size a
r, =x; z,_., = Clip, {zn +a-sign(V.L(0,25,,yx))}
\_ Pro: Effective Con: iterative, thus time-consuming -

Fixed

Forward Pass Logit Vector

L

o - szgn(vmﬁ(e, Tn, ygt))

|
I
0 I €: magnitude

[1] Towards Deep Learning Models Resistant to Adversarial Attacks; ICLR 2018 a. Step Size 14




Attack Techniques —

In the white-box setting the gradients of the model can be used to construct the adversarial perturbation

4 Fast Gradient Sign Method (FGSM) [1] )
Stepping one step of step size € into the gradient direction L=CE @ . D'eepF'oo(Ii [5] . m
) ) eometry-inspired approach to
' =z +e-sign(V.L(0,z, ygt)) push a sample over the decision
\_ Pro: Fast Con: Less effective . boundary

Targeted FGSM [2]
Stepping one step of step size € into the gradient direction of target class t

' =x—¢€-sign(V,L(0,z,1))

_ Compared with non targeted FGSM, the targeted one flips the loss sign and replace gt with t Y,
4 Projegted Gradient Descgnt (PGD) [2,3] N Linear approximation of DNNs
, :teratlvely 2)’?}/ FGSM V\;Ith step size ? - decision boundary
Ty =T Ty, = 'lpar;,e{wn + o - szgn(Vm[«( y Lny ygt))} \Qx Geometry-inspired  Con: SIOM
\_ Pro: Effective Con: iterative, thus time-consuming Y,
e Carlini & Wagner attack (C&W) [4]
Minimal perturbation to make the highest (h) logit Z() lower than the second highest one
2 / Iy — . : "y _ Y _
L=1682+c- f(z) f(z') = max(max;, Z;(0,2') — Z,(0,2'), —k)
\_ Pro: Minimal perturbation thus least visible Con: Relatively more complex for minimizing the perturbation and loss function

[3] Towards Deep Learning Models Resistant to Adversarial Attacks; ICLR 2018
[4] Towards Evaluating the Robustness of Neural Networks; Symposium on Security and Privacy (SP) 2017 15
[5] DeepFool: a simple and accurate method to fool deep neural networks; CVPR 2016

[1] Explaining and Harnessing Adversarial Examples; ICLR 2015
[2] Adversarial examples in the physical world; ICLR Workshop 2017




Real-world Attacks

3D-printed adversarial objects [1]

Black-Box attacks on
web applications [3]
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Attacks on Traffic Signs [4]

Clarifai.com

Subtle Poster Camouflage Camouflage Art

s targeted Clarifai.com results Distance/Angle Subtle Poster g R
Oir:ng;::l l;rl;]:l results of tlz; rbgeelt adversarial of targeted Right Turn Graffiti (LISA-CNN)
= original image example adversarial example
bridge, window, 57 0°
sight, s wall,
viaduct arch, m_ o old,
: screen ;
river, decoration,
sky design
' 5% 15°
fruit, Buddha,
hip, rose fall, . gold,
hip, food, ltope’ temple,
rosehip little, P celebration,
wildlife artistic 107 0°
dogsled, | group together, cherry,
dog four, hip, rose branch,
sled, sledge, hip, fruit,
dog sled, rosehip 3 food, 107 30°
sleigh enjoyment & season -
B classified as turtle [ classified as rifle pug, seaseal!
M classified as other pug, | frcndship, ,
e das adorable, sea lion head, 407 0°
pug-dog purebred, sea,
Adversarial Patch [2] ~
Targeted-Attack Success 100% 73.33% 66.67% 100%

Classifier Input Classifier Output
W TUSETTE

S B

Adversarial Wearables [6,7]

"it was the Hugh Jackman: 1.0000

best of times,
it was the
worst of times

Meg Ryan: 1.0000

Daniel Craig: 1.0000
e

slug snail orange

Classifier Output

X 0.001

Kiefer Sutherland: 0.9999 Meg Ryan: 1.0000
3 TE

g i.s a truth
I R
banana  piggy_bank  spaghetti that a single"
[1] Synthesizing Robust Adversarial Examples; ICML 2018 [4] Robust Physical-World Attacks on Deep Learning Visual Classification; CVPR 2018
[2] Adversarial Patch; 2017 [5] Audio Adversarial Examples: Targeted Attacks on Speech-to-Text; 2018 16

[3] Delving into transferable adversarial examples and black-box attacks; ICLR 2017 [6] Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors; 2019
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3D-printed adversarial objects

[1] Synthesizing Robust Adversarial Examples; ICML 2018 17



http://www.youtube.com/watch?v=YXy6oX1iNoA
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Adversarial Defenses
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Attack & Defense: A two-player game

One player aims to attack the model; the other one tries to defend the model.
Who will win this game? It depends on the rules of the game.

The attacker does not know
what the defender is doing

The attacker knows what
the defender is doing

(Attacker wins) (Defender wins)




Defenses
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1 Easy defense: The attacker does not know what the defender is doing

Motivation: Denoising the image

/
Network Modification
Adding parts to the network or
modifying the layers for defense

\_

~

)

Motivation: Obfuscated gradients

Input Modification

Manipulate the input to
deweaponize the adversarial
\_ example

)

[1] Explaining and harnessing adversarial examples; ICLR 2015

[2] Generative Adversarial Trainer: Defense to Adversarial Perturbations with GAN; 2017
[3] Feature Distillation: DNN-Oriented JPEG Compression Against Adversarial Examples; 2018

Adding “pre-input” layers trained [5]

JPEG Compression [3]

One Pass Process

Enhan d JPEG Decompression

JPEG

- >>QC/¢I >>ij / ithmetic

Process

Huffnan/ \ o rope Gt
E < Decoding J>> l >> B >> i >> et
| Two Pass Process
Enhanced 1?_{(: Compre IPEG PPEC

MagNet [6]

I—X> Reform -i’)[

Target
Classifier ]—»class label y

Detect

Is X adversarial for
any detector?

Yes

|—* X is adversarial
2 Hard defense: The attacker knows what the defender is doing

Feature Squeezing [4]

Adversarial

Prediction,

Legitimate

[4] Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks; NDSS 2018

[5] Defense against Universal Adversarial Perturbations; CVPR 2018
[6] MagNet: a Two-Pronged Defense against Adversarial Examples; CCS 2017

20
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Adversarial Training

Training a model (iteratively) with adversarial examples makes a model more robust.
So far adversarial training is the only method that is proven to really robustify a model.

Normal Network Training Adversarial Training
min E (1) L5, )] M) |max L0, + 6,y
® ®
® ®
o [*/]| o o [°A o
® /. ® o Vel ®
g —
i ® i !;'f ®
® e L & 2 ®
Set of points that can be The simple decision boundary does not Separating the L«-balls requires a
easily separated with a separate the L~-balls (squares) around the more complicated decision
simple linear decision data points — adversarial examples (red boundary. The resulting classifier is
boundary stars) will be misclassified robust to adversarial examples with

[1] Explaining and harnessing adversarial examples; ICLR 2015 bounded L°°-n0rm pertu rbatlons.
[2] Towards Deep Learning Models Resistant to Adversarial Attacks; ICLR 2018 21
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Robustness may be at odds with accuracy

Rob ess
Agcunacy

Trade-off between standard accuracy & adversarially robust accuracy

[1] Robustness may be at odds with accuracy; ICLR 2019 22
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Universal Adversarial Perturbations
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Image-dependant vs. image-agnostic

Image-dependant attacks
One perturbation is crafted to attack one specific image

Image-agnostic (universal) attacks
One perturbation is crafted to attack a set of images
UAP will be discussed in more detail again

Image Image-dependant Adversarial Example
perturbation H R g -

| Ll
[ 11 Joystick 0 Chihuahua [

Grille 0 Jay

Thresher 0 Labrador

Flagpole Labrador
—
—
Tibetan mastiff 0 Tibetan mastiff
-
% Lycaenid 0 Brabancon griffon
|
AN

— Balloon ® Labrador |-

| W

Whiptail lzard 0 Borderterrier

[1] Intriguing properties of neural networks; Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus; ArXiv 2013
[2] Universal adversarial perturbations; Moosavi-Dezfooli, Fawzi, Fawzi, Frossard; CVPR 2017 24
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Qualitative visualization

I mag es + UAP ‘ wool Indian elephant

AT Sn i T
TIPS A AT

common newt carousel macaw three-toed sloth macaw

Amplified UAP

(a) CaffeNet (b) VGG-F (c) VGG-16 (d) VGG-19 (e) GoogLeNet (f) ResNet-152

[1] Universal Adversarial Perturbations; CVPR 2017 25
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Universal adversarial perturbations (UAPs

[ One perturbation to fool most of the data samples }
Objective
" "o Fool most of the samples with a single
C(x+6) # C(x) for"most"x ~ X Serturbation
subject to ‘ |5‘ | < € The perturbation is smaller than magnitude ¢
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Classical DeepFool-based UAP

Algorithm 1 Computation of universal perturbations.

1: input: Data points X, classifier 12: desired ¢, norm of
the perturbation &, desired accuracy on perturbed sam-

Avs, Algorithm: ples 9.
Aq‘) R o Craft single perturbation (via P ou.t.pu.t: Universal perturbation vector v.
: DeepFool [3]) to let one sample ~ * "ualizev < 0.
P ik P 4 while Err(X,) <1 — 6 do
cross the decision boundary 5. for each datapoint z; € X do
*Z1,2,3 6: if k(z; +v) = k(z;) then
sends z; + v to the decision boundary:
samples to aggregate the
% universal adversarial Av; < argmin ||| s.t. k(z; + v + 1) # k(z;).
perturbation.
Figure 1. Schematic representation 8: Update the perturbation:
of the algorithm in [1] to compute
universal perturbations. v Ppe(v+ Av;).
9: end if
10: end for

11: end while

[1] Universal adversarial perturbations; Moosavi-Dezfooli, Fawzi, Fawzi, Frossard; CVPR 2017
[2] Analysis of universal adversarial perturbations; Moosavi-Dezfooli, Fawzi, Fawzi, Frossard, Soatto; ArXiv 2017 27
[3] DeepFool: a simple and accurate method to fool deep neural networks; Moosavi-Dezfooli, Fawzi, Frossard; CVPR 2016
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Practical Relevance of UAPs

Image-Dependent Adversarial Examples Universal Adversarial Examples

Can be crafted beforehand
Only a simple summation is required during
inference

Have to be crafted on the spot for each sample
(during inference)

UAPSs are better suited for “real-world” attacks
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Our Research beyond classical UAP

1. The UAP attacks samples from every class without intended discrimination, which can easily cause suspicion

2. The UAP generation relies on the original training data & The reason for the existence of UAPs is still not well
understood

3. Can the insight of UAPs be applied to the field of data hiding?
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Our Research beyond classical UAP

1. The UAP attacks samples from every class without intended discrimination, which can easily cause suspicion
— CD-UAP: Class-Discriminative Universal Adversarial Perturbations (AAAI 2020)
— Double targeted universal adversarial perturbations (ACCV 2020)

2. The UAP generation relies on the original training data & The reason for the existence of UAPs is still not well
understood

— Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations (CVPR 2020)

3. Can the insight of UAPs be applied to the field of data hiding?

— UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging (NeurIPS 2020)
— Universal Adversarial Perturbations Through the Lens of Deep Steganography: Towards A Unified Fourier
Perspective (AAAI 2021)
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CD-UAP: Class-Discriminative Universal Adversarial
Perturbations (AAAI 2020)

Chaoning Zhang*, Philipp Benz*, Tooba Imtiaz, In-So Kweon
* indicates equal contribution

Korea Advanced Institute of Science and Technology (KAIST)
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CD-UAP: Class-Discriminative Universal Adversarial Perturbations

An attack method to generate a universal perturbations that fool a target network to misclassify
only a chosen group of classes, while having limited influence on the remaining classes.

(N

g = C(xy 4+ 0) # C(xy) for most xy ~ A}
E" (i 122 Misclassify most samples from targeted classes

60
kD 4

2

o O

012345617289

C(xnt +6) = C(xn) for most x,y ~ Xy

_ , Keep original classification for most samples from
Perturbation Target Network Class-wise accuracies
(fixed) non-targeted classes

0

Images from

non-targeted classes targeted classes

Figure 1: Class Discriminative Universal Adversarial Perturbation (CD-UAP). After

adding a single perturbation, model performance on a subset of classes is significantly | ‘5| ‘ < €
reduced, while the influence on the non-targeted classes is limited. b —

The perturbation is smaller than magnitude €

[1] CD-UAP: Class-Discriminative Universal Adversarial Perturbations; Zhang*, Benz*, Imtiaz, Kweon; AAAI 2020 32
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CD-UAP: Class-Discriminative UAP

Evaluation metric: Absolute Accuracy Drop (AAD) for both targeted classes and non-targeted classes.
A, ,p=AAD, - AAD_, the higher the better.

Table 2: Experiments on CIFAR10 and CIFARIOO for vari-
ous choices of loss functions. The two accuracies in each en-
try show the AAD, and AAD,,. The initial performances for
CIFARI10 on ResNet20 are Ace, = 90.86, Acc,, = 92.44;
and for CIFAR 100 on ResNet56 are Acc; = 65.20; Acey =

Table 3: Experiments on CIFARI10 with different groups of
targeted classes using VGG16 and ResNet20

70.43, for targeted classes 0 to 4 F S Ace, AAD, Accu AADy| Aaap
[1:5:2] 90.57 7863 9423 14.74 | 63.89
. [2:6:2] 9287 6887 9324 21.79| 47.08
CIFAR| L [CE i CE [ BE 5 %0 .4:1] 9240 75.00 9386 7.36 | 67.64 The
— © [5:9:1] 93.86 7500 9240 17.56 | 57.44 i
L7[87.04 69.40[84.36 48.48(84.68 52.52(83.86 45.06 Z [0:6:1] 9210 6924 9553 3.13 | 66.11 higher
10 | £F [84.64 54.04/85.74 24.14[81.04 25.08/|84.94 23.78 3:9:1] 92.80 7860 9390 8.70 | 69.90
LB (88.58 61.54|81.86 10.18(64.66 7.92 |81.52 11.60 1:5.2] 8880 8227 9287 1593 | 6634 the
L¥161.20 60.23(60.40 50.50| 1.60 1.15 |62.40 46.35 S [2:6:2] 9230 79.33 9137 2140 | 57.93 better
100 | ££ |63.80 55.00/63.40 47.12/62.40 46.02|62.80 47.97 5 [0:4:1] 90.86 8146 9244 1024 | 7122
LB (63.20 53.67]48.80 17.31|23.40 7.16 |48.00 17.79 % [5:9:1] 9244 8016 9086 17.36 | 62.80
& [0:6:1] 9081 81.33 9360 4.67 | 76.66
_ {} _ _ 3:9:1] 91.21 8099 9267 7.90 | 73.09
This loss combination is the best

L CE: Cross- -entropy loss (Increase for |_ and decrease for |_ ) S: targeted c!as_ses, [lowest class, highest class, step size], e.g.
L": Logit loss (Decrease for L, and mcrease forL ) [(1)‘51? !ng!cates Iarge’;eg c:asses (1)?2 gn4d
LBL: Bounded Logit Loss (Slmllar to C&W loss; Decrease forL, [0:4:1] indicates targeted classes 0,1,2,3,

and increase for L ) 33
[1] CD-UAP: Class- D|scr|m|nat|ve Universal Adversarial Perturbations; Zhang*, Benz*, Imtiaz, Kweon; AAAI 2020
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CD-UAP: Class-Discriminative UAP

Further results on CIFAR100 and ImageNet

Table 5: Experiments on CIFAR100 targeting superclasses using VGG19 and ResNet56 Table 7: Experiments on ImageNet targeting 1 super class,
e =18

st VGG19 ResNet56

36 Acee  AAD:. Acew AADw Aaap | Acaa AAD:  Acew AADn |Aaap Super Classes Ace; AAD, Aceyy AADy|Aaap
aquatic mammals 56.20 44.20 70.97 14.05 30.15 | 5820 43.60 70.80 14.87 | 28.73 Frogs 70.0 46.0 716 19.5 | 26.5
fish 67.00 45.60 7040 1825 27.35 | 67.80 49.00 70.30 1845 | 30.55 2 Sharks 80.0 53.3 71.6 16.8 | 36.5
flowers 76.40 33.80 69.91 20.57 1323 | 7540 30.80 69.90 24.18 | 6.62 3 Awcrafts 780 69.3 716 17.7 | SL6
food containers 69.60 5240 70.26 1628 3612 | 71.40 5440 70.11 1644 | 37.96 > JRacket Radiator Radiy 8.0 221 116 185 | 242
fruit and vegetables 79.40 5560 69.75 18.04 37.56 | 76.60 52.00 69.83 17.65 | 3435 SplcEaloes  oaoke E GLRTTAS | i3S
household electrical devices 70.00 49.20 70.24 15.95 33.25 75.00 55.60 69.92 16.52 39.08 Frogs 70.0 42.0 724 18.0 | 24.0
household furniture 7740 63.80 69.85 1576 48.04 | 76.00 60.00 69.86 14.90 | 45.10 x Sharks 81.3 553 723 16.1 | 392
insects 7020 3860 7023 16.99 2161 | 71.60 4520 70.09 21.24 | 2396 2 Agrefi 818 720 734 172 | M8
large carnivores 7020 53.60 70.23 1550 3810 | 70.40 6020 70.16 1544 | 44.76 R SRaln e Aoy (208 f1 2 Tia | T88
large man-made outdoor objects | 82.60 66.60 69.58 1556 5104 | 81.20 66.20 69.59 15.49 | 50.71 Spaceobject 899 206 722 200 | 68
large natural outdoor scenes 79.00 70.80 69.77 13.12 57.68 | 78.40 67.60 69.74 12.13 5547 - Frogs 75.3 52.0 76.1 185 | 335
large omnivores and herbivores | 69.80 51.60 70.25 18.33  33.27 | 71.40 56.00 70.10 17.15 | 38.85 o Sharks 83.3 66.7 76.1 16.1 | 50.6
medium-sized mammals 72.80 4940 70.09 1727 3213 | 71.80 5420 70.08 18.83 | 35.37 4 Aircrafts ~ 84.0 653 76.1 16.8 | 485
non-insect invertebrates 66.40 40.60 70.43 18.09 2251 | 66.00 44.60 7039 18.38 | 2622 2 ‘RacketRadiohn Ritho 75.3 -46.7 76.1 171 | 298
people 52.20 31.60 71.18 1467 1693 | 4840 3260 71.32 1485 |17.75 Spaccobjects 598 433 762 204 | 229
reptiles 59.20 43.80 70.81 16.05 2776 | 59.20 4280 70.74 17.24 | 2556 & Frogs 740 480 783 17.2 | 308
small mammals 56.00 47.60 70.98 15.14 3246 | 56.40 47.20 70.90 13.34 | 33.86 a Sharks 80.0 61.3 78.3 129 | 484
trees 66.80 49.60 70.41 1558  34.02 | 66.60 54.00 70.36 17.05 | 36.95 Z Aircrafts ~ 86.0 78.7 783 16.1 | 62.6
vehicles 1 8220 44.00 69.60 17.99 26.01 | 80.60 51.60 69.62 20.44 | 3116 % Racket Radiator Radio 72.7 44.0 78.3 144 | 29.6
vehicles 2 81.20 53.40 69.65 21.33 3207 | 81.00 6220 69.60 21.92 | 40.28 a Space objects  64.7 36.7 78.4 16.7 |_20.0 |

[1] CD-UAP: Class-Discriminative Universal Adversarial Perturbations; Zhang*, Benz*, Imtiaz, Kweon; AAAI 2020 34
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Double targeted universal adversarial perturbations
(ACCV 2020)

Philipp Benz*, Chaoning Zhang*, Tooba Imtiaz, In-So Kweon
* indicates equal contribution

Korea Advanced Institute of Science and Technology (KAIST)
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Double Targeted UAPs

UAP to fool one targeted source class to a sink class, while having limited adversarial effect on
other non-targeted source classes to avoid raising suspicion.

Predicted Labels*
Target Network i

targeted
source class

Images from

(Fixed) ( Right Turn )
Pretrained i S
—o—
g8 é _ : L Traffic light ahead
Q f.—; &
H 5 3) X :
84 g 2 :
& & H LI L
L) perabain :
* B dassification w/ perturbation ( Speed limit 50 )

Classification w/out perturbation

36

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020
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Loss Design

The loss consists of a targeted (L,) and a non-targeted part (L )
L=L+al:

Objective of the targeted part: Fool the network by shifting the prediction from the source class into the sink class
This is broken down into two subtasks:
(1) Decreasing the logit value for the originally predicted class L _to not being the highest logit anymore
(2) Increasing the logit for the sink class L , fo be the highest logit

Et — ﬁtl -+ EtQ, with

Ly = max(l:p(xt +9) — m;?x(f/z(’rt +4)),0) p = arg max(f;(:vt))
i#p
Ly = max(_;nax (lAjz(’Izt +4) — IA/Sink(a:t +9)),—D)
17 Ysink

Objective of the non-targeted part: Achieve good classification performance
Adopt the cross-entropy function

~

Ent = X(i—/(Inl + 5) ]]-(F(Tlll)))

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020 37
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Algorithm

A simple, yet effective algorithm

Algorithm 1: Double Targeted Attack Algorithm

Input: Data distribution X, Classifier F, Loss function £, Mini-batch size m,
Number of iterations I, Perturbation magnitude ¢
Output: Perturbation vector §

Xt CX > Subset
Xnt € X > Subset
00 > Initialize
for iteration = 1,...,1 do
Bt ~ X1 |Bi| = & > Randomly sample
Bnt ~ Xnt: |But| = = > Randomly sample
B < B¢ |J Bt > Concatenate
gs ]E[Vaﬁ] > Calculate gradient
0 < Optim(gs) > Update perturbation
R H_fs()ll—p( > Projection
end

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020 38
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Quantitative Results

DTA achieves reasonable performance for different mapping scenarios on a wide range of datasets.

1. The targeted fooling ratio for the targeted classes (k,) is reasonably high.
2. Asignificant gap between k, and k_ indicates that the crafted perturbation is discriminative between targeted class and
non-targeted classes

Table: Experimental results for the Double Targeted Attack (DTA) for the datasets CIFAR-10,
GTSRB, EuroSAT, YCB and ImageNet under 10 scenarios S to S,. All numbers are reported in %.

Dataset

Model

S( ) S 1

Sa

Kt Knt| Kt Knt| Kt Ko

LS‘:‘

Sy

Ss

St

S7 Ss So

K Knt I Kt Knt | K Knt ‘ Ki Nntl‘ K Knt Kt Knt Kt Knt

Avg

! Kt  Knt

CIFAR-10

VGG-16
ResNet-20

77.5 20.5/83.5 22.0

78.8 26.1|84.6 28.0

78.2 14.7
84.0 24.3

81.4 21.5
84.2 26.9

73.0 18.6
77.1 22.0

79.1 14.2
82.1 21.3

75.1 15.1
83.8 14.7

76.7 24.6/75.0 20.386.2 16.¢
72.9 33.2{80.0 27.8|89.8 22.:

178.6 18.8
181.7 24.7

GTSRB

VGG-16
ResNet-20

89.0 0.2 100 1.1

184.3 0.5 100 1.6

87.1 1.2
53.1 0.2

72.2 0.6
77.8 1.8

91.0 1.3
87.6 2.9

83.6 2.4
77.1 4.4

88.3 1.1
70.0 2.7

80.0 0.7/95.0 1.9/81.1 1.7
88.3 1.2 /80.0 0.3 |64.4 0.7

186.7 1.2
178.3 1.6

EuroSAT

ResNet-50

Inception-V3

96.2 33.0/98.8 18.0
94.3 28.7|95.2 18.9

95.2 31.1
93.8 41.4

96.6 22.1
99.2 56.3

99.2 28.7
93.0 29.4

95.0 24.0
93.0 24.2

94.4 44.3
91.6 34.6

96.3 17.6/96.3 24.5(91.2 22.7
96.0 21.8/96.8 31.6/89.2 18.¢

195.9 26.6
94.2 30.6

YCB

ResNet-50

Inception-V3

100 14.5]100 24.2
100 16.6| 100 30.0

100 32.4
100 38.7

96.7 38.0
99.2 31.2

100 33.5
100 12.9

99.2 38.3
98.3 20.0

100 44.4
100 32.2

99.2 41.7, 100 19.0/ 100 33.1
100 36.6/ 100 17.3|100 39.2

199.5 31.9
199.8 27.5

ImageNet

VGG-16
ResNet-50

Inception-V3 |
MobileNet-V2|74.0 11.3|94.0 17.0

72.0 10.3/96.0 19.5

174.0 13.9/94.0 21.4

78.0 10.0/86.0 15.7

90.0 19.5
82.0 15.2
86.0 12.2
88.0 20.4

82.0 28.3
72.0 20.9
78.0 15.6
70.0 15.3

74.0 15.9
62.0 13.6
58.0 9.5
72.0 16.0

82.0 13.0
84.0 15.5
76.0 12.9
84.0 15.0

66.0 8.9
72.0 9.8
70.0 8.9
74.0 14.5

64.0 12.9/66.0 21.5/70.0 26.1
66.0 21.4/66.0 17.3/62.0 18.1
72.0 15.7/62.0 18.9/66.0 17.4
74.0 21.7/72.0 18.8/70.0 21.¢

176.2 17.6
173.4 16.7
173.2 13.7
177.2 17.2

K, targeted fooling ratio for the targeted source samples

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020

K .- targeted fooling ratio for the non-targeted source samples 39
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Multi2One attack

Attack multiple source classes (MS) to be misclassified as one sink class.

Table: Experimental results for the universal Multi2One targeted perturbation on
ImageNet under 4 scenarios MS to MS, attacking three source classes to one
sink class. All numbers are reported in %.

MSo M S, M S5 M S35 Av g

Kt RKnt| Rt Knt| Kt EKEnt| Kt Knt || Kt Knt

VGG16 63.3 24.9(69.3 33.7(76.0 25.8(69.3 26.869.5 27.8
ResNet-50 |64.0 30.1|63.3 32.3|78.7 29.2|62.7 23.2)67.2 28.7
Inception-V3 |58.0 19.4|56.7 23.8|66.7 19.0|66.7 20.8162.0 20.8
MobileNet-V2(68.0 27.2{66.0 28.0|74.0 25.6(66.0 24.4168.5 26.3

Model

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020 40



KAIST RCV Lab.

Qualitative Results

CIFAR-10 GTSRB EuroSAT YCB
Deer (100.0%) Turn Right.(IOOAO%) Industrial (100.0%) Large Clamp (100.0%)

ImageNet
Photcopier (99.7%)
7 3

original images

amplified version of the
corresponding

perturbations .
R

Frog (99.9%)

adversarial example

Figure: Examples of adversarial perturbations for various datasets and networks. The confidence values
of the network and the predicted labels are stated above the images. The target network is indicated
above the amplified perturbation.

41

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020
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Physical Attack - Double Targeted Patch

Table: Quantitative results for the generated DT-Patch on ImageNet

Hammer — Hummingbird Screwdriver — Go-Kart Coffee Mug — Chocolate Sauce
Kt Knt | ki Knt | ke Knt

80.0 42.7 192.0 44.9 196.0 41.6

Figure: Real-world examples of the DT-Patch for the three different scenarios

42

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020
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Understanding Adversarial Examples from the Mutual Influence
of Images and Perturbations (CVPR 2020)

Chaoning Zhang*, Philipp Benz*, Tooba Imtiaz, In-So Kweon
* indicates equal contribution

Korea Advanced Institute of Science and Technology (KAIST)




Background: Adversarial Examples are not Bugs they are Features

KAIST RCV Lab.

Adversarial Examples can be directly attributed to the presence of
non-robust features [1]

Robust dataset

good standard accuracy
good robust accuracy

4

Unmodified
test set

-

good standard accuracy
bad robust accuracy

Training image

Non-robust dataset

Figure 1: Disentanglement of features into combinations of
robust and non-robust features [1]

Training image Adversarial example Relabel as cat
towards “cat”

Robust Features: dog
Non-Robust Features: dog

Robust Features: dog
Non-Robust Features: cat

«

good accuracy

Evaluate on
original test set

Figure 2: A dataset appearing mislabeled to humans (via
adversarial examples) can results in good accuracy on the
original test set [1]

[1] Adversarial Examples Are Not Bugs, They Are Features; llyas, Santurkar, Tsipras, Engstrom, Tran, Madry; NeurlPS 2019 44




KAIST RCV Lab.

Background: Adversarial Examples are not Bugs they are Features

The existence of adversarial examples can be attributed to the existence of Non-robust features in the dataset.

alrplane “ship” dog “truck”

I Std accuracy B Adv accuracy (€ =0.25)

& Lkl

Std Tralnlng Adv Tralnmg Std Tra|n|ng Std Tramlng
Uslng D USlng D us|ng DR us|ng DNR

(@) (b)

Figure 2: Left: Random samples from our variants of the CIFAR-10 [Kri09] training set: the original training
set; the robust training set Dg, restricted to features used by a robust model; and the non-robust training

set Dng, restricted to features relevant to a standard model (labels appear incorrect to humans). Right:
Standard and robust accuracy on the CIFAR-10 test set (D) for models trained with: (i) standard trammg

(on D) ; (ii) standard tralmng on Dyg; (iii) adversarial training (on D); and (iv) standard training on Dr.
Models trained on Dy and Dy reflect the original models used to create them: notably, standard training
onD Rr yields nontrivial robust accuracy. Results for Restricted-ImageNet [Tsi+19] are in D.8 Figure 12.

Test Accuracy onD (%)

[1] Adversarial Examples Are Not Bugs, They Are Features; llyas, Santurkar, Tsipras, Engstrom, Tran, Madry; NeurlPS 2019 45




PCC Analysis —

The Pearson correlation coefficient (PCC) is a widely adopted metric to measure PCC _ cov(X,Y)
the linear correlation between two variables. XY

Ox0Oy
15
10
Lc5
0 .
20 0 10
Lp
15
10
Lc
5
0
S

space shuttle (100.00%) bee (99.79%) space shuttle (99.90%)

The PCC between different DNN output logit vectors can.be calculated. =~ &
This provides insight about the “stronger” contribution of the two inputs to the final outcome. A higher PCC value
indicates the more significant contributor. 46

[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020

10
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PCC Analysis

Treat the DNN logits as a vector for feature representation and use them to analyze the mutual influence of two

independent inputs based on the Pearson correlation coefficient (PCC)
: smmm | PCC:097 | | PCC:0.21 |

15 — 15

L 10
CS
. “Universal perturbations
oy o L= , ontain dominant features,
PCC:0.06 | =/ PCC:005 | and images behave like
' noise to them”
Lso J
C
: : "m -50 Z [PCC: 0.95]
c=a+b 0 La 20 0 Lb 50
s/ PCC:0.62 | °¢| PCC:0.25 | e ~

R Image-dependant
perturbations seem to
L not contain features by

L | _ LA il N pcco62] | I PCC: 0.25 K themselves /
lorikeet (100.00%) targeted IDP sea lion (8.39%)
a b c=a+b ° L ° Ly
PCC-Analysis result for one sample image "lorikeet'. Three scenarios of input combinations are considered:
1: image + noise; 2: image + targeted UAP; 3: image + targeted image-dependant AE. The columns show
input a, input b, input c=a+b, logit vector analysis of L_c over L_a and vector analysis of L_coverL_b

[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020
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Noise Perspective vs. Feature Perspective

Noise Perspective (Prior works) | Feature Perspective (Ours)
e Treat the targeted UAP as noise (“bug”) to the e UAPs contain features of a certain class
sample to be attacked
e Treatment of the images as noise to the
generated UAP during the optimization process
In order to be recognizable by the target
network

e Requires the samples from the training
dataset in the UAP generation process

e Explicitly designed to let individual samples
cross the decision boundary e No need for semantic features as in the
original training dataset samples

e Assumes that the attack generalizes to
unseen samples e Proxy datasets as background noise:
Downloaded from the Internet, MS-COCO,

Pascal VOC, Places365

Fast: ~2 minutes

Requires the original training dataset
Slow: ~2 hours

—

[ Requires no original training dataset }

4
[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020 8
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Data-free Targeted UAP

If images just behave like noise to the features in UAPs. Can we just use another dataset
to craft UAPs? Yes we can!

UAP generation stage

Backpropagation
As a loss function you can use
the cross-entropy between the

L(L,,t) outputlogit and some (randomly

chosen) target class.

Targ(‘;iij)work L | For example: Choose target

class sea lion

ImageNet 3

pretrained

Craft the perturbation with the
help of some proxy dataset

Logit Vector

UAP testing stage Universal  qversarial
Advearlal PerturEahon Examples
Test the 3 ‘ '

Is the sample misclassified?

perturbation on the Good

ImageNet validation
dataset

|s the sample correctly classified?
Bad

Figure 1: Inference with adversarial examples formed with a targeted universal
adversarial perturbation crafted for target class “sea lion”.

[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020

49
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Data-free Targeted UAP: Results

4 )
The proposed approach outperforms
previous data-dependant and data-free UAP
generation methods

- /

Table 2: Comparison to other methods. The results are divided
in universal attacks with access to the original ImageNet
training data (upper) and data-free methods (lower). The

metric is reported in the non-targeted fooling ratio (%)

Method AlexNet' GoogleNet VGG16 VGG19 ResNet152
UAP [14] 93.3 78.9 783 T77.8 84.0
GAP [19] - 82.7 83.7 80.1 -
Ours(ImageNet [11]) 96.17 88.94 94.30 94.98 90.08
FFF [18] 80.92 56.44  47.10 43.62 -
AAA [21] 89.04 75.28 7159 7284  60.72

GD-UAP [17] 87.02 71.44 63.08 64.67 373
Ours (COCO [12]) 89.9 76.8 92.2 91.6 79.9
Ours (VOC [5]) 89.9 76.7 92.2 90.5 79.1
Ours (Places365 [29]) 90.0 76.4 92.1 91.5 78.0

[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020 50
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Can you see the features?

A et e

GoogleNet

e S e
e g
# T ’

¥ s,

= = N % k] B

VGG19 ResNetl152 InceptionV3

1
[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020 5
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UDH: Universal Deep Hiding for Steganography, Watermarking
and Light Field Messaging

Chaoning Zhang*, Philipp Benz*, Adil Karjauv*, Geng Sun, In-So Kweon

* indicates equal contribution

Korea Advanced Institute of Science and Technology (KAIST)
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What you see is not what the machine sees

Perturbation

Original Image Perturbed Image What?
(Cat feature) [ ’

)

— ®© . [ Dog!

35

o P ® -

= 0

ey < : iy el
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What you see is not what the machine sees

. Perturbation
Original Image (Cat feature) Perturbed Image [ What? }
SR
— A |
- Dog!
0 TS
O P ® [
=) g
53
< Cat!
N 3 |V
Perturbation (Encoded [ Secret? ]
secret) -
) ( N
— ° No!
\, l/ J
b o D . )
> e Yes!
cC I
- \ 1 y
Encode Decode
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a )
Digital Steganography
Definition: Hiding secret message within a digital file, such as images or videos.
S Challenge: Trade-off between Capacity vs. secrecy )

Secret Message

Encoding Decoding

Container Image

Cover Image

Recovered
secret message

0100
0000
I 01 |



Problems of existing solutions

[ Traditional steganography vs. Deep steganography }

Traditional Steganography

Deep Steganography [1]
Secret: Binary message (<0.5 bits per pixel)
Requires perfect encoding/decoding
Evading steganalysis is important

Secret: a full image (24 bits per pixel)
Highlighting visual quality
Inevitable to be detected due to high capacity

i T

[ Hiding Images in Plain Sight: Deep Steganography [1] }

Cover Imag

A
X

Secret Image

j How the secret image is encoded is dependent

on the cover image _
Container Image Revealed Secret Image

Hiding Reveal | [ & {\ms
Network Network . '

Preparation network is not absolutely necessary

Preparation
Network

[1] Hiding images in plain sight: Deep steganography; Baluja; NeurlPS 2017
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Deep Neural Networks are sensitive to invisible perturbations, leading to misclassifications.
Universal adversarial perturbations exists to fool most images.

Image Image-dependent Adversarial
Adversarial Perturbation [1] Example
Cover-Dependent
= ] Deep Hiding

(Existing DDH)

Universal Adversarial
IMmages  aqversarial Perturbation [2] Examples

e 0y |

o 4 Universal
N q}, ] Deep Hiding
S 1 ] (Our UDH)

e e

[1] Explaining and Harnessing Adversarial Examples; Goodfellow, Shlens, Szegedy; ICLR 2015
[2] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020
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Universal Deep Hiding (UDH)

A novel Deep Hiding meta-architecture to hide secret image in a
cover-agnostic manner.

/Cover image Sender Side / Receiver Side\

Container image Container image

Revealed secret image

Revealing
Network

Encoded secret image

Hiding
Network

e Comparable performance as DDH
/ e Facilitating visualization of how secret image is

encoded.
\_ )

A secret image is fed to the hiding network to yield an encoded secret image, which can be added to a random cover
image to form a container image. The revealing network then retrieves the secret image from the container.

[1] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurlPS 2020.
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The Hiding network encodes secret image in high-frequency representation.
The reveal network easily extracts high-frequency encoded secret image from container

Secret image Encoded secret image Fatch 1

. s
Patch 3
8
— I(5,5.)
6 - I —pe
o, Figure 2: A secret image and its corresponding encoded secret image with
< zoomed patches for the UDH meta architecture.
2 Secret image Encoded secret image Fatch 1
TR = (R e | Falh2

Distance (pixels)
Figure 1: Local encoding. Influence of

setting one pixel in the secret image to > e e
zero on the encoded secret image. il o R

Figure 3: A secret image and its corresponding encoded secret image with &
zoomed patches for a (universal) hiding network trained in pair with the
fixed reveal network from the DDH meta architecture.

[1]1 UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurlPS 2020.
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Beyond hiding one image in one image

Hiding M Images in N Images _ _ o
e Hiding many images in few images Different Secrets for Different Recipients
e Hiding 2 color images in one gray Hiding multiple secret images in one cover so that different
inra AR - recipients retrieve their respective secrets

— Covers

I 4 i . L ‘r’“
> A N » i k L
, e 7 g Secrets
Sy _,: ﬁ}a!’*“« 0T e B S e
LAY o~ |

6 images hidden in 3 images

[1] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurlPS 2020.




Beyond Digital Steganography —

4 )
Watermarking

e Definition: Hiding secret message for proving the ownership
e Challenge: robustness to distortions

- /

/
Photographic steganography or Light Field Messaging (LFM)

e Definition: Hiding and transmitting secret message by taking a photo
on screen display
e Challenge: robustness to light effect

)

With the UDH, we are the first to demonstrate the
possibility of hiding a full image for both applications.

[1] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurlPS 2020.



Universal Deep Watermarking

/ Image \

With the generated universal watermark, it requires only
one summation to watermark one image, UDH is well
suited to handle large amounts of images.

oo Noisy .
£ommucnme ——p T [—» ‘ ® —— Transmission — R |— e promanen
"ee ‘ . he

Media

Watermark Watermark Watermarked Noised Watermarked Revealed
\ Encoded Image Image Watermark /

\ Original  Identity = Dropout  Gaussian JPEG Original Identity Dropout Gaussian

[1] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurlPS 2020.




Light Field Messaging (Photographic Steganography)

/ Cover UDH has the following advantages over DDH based LFM [1]: \
1. No need to collect a 1.9TB dataset

No overfitting to certain hardware

Significantly better performance

Perspective
Transform

Secret Encoded Container Container Photo Container Photo Revealed Secret /

Origihél Photo Revealed Original Original
Container Container Secret Secret Container

Warped Revealed Original
Container Secret Secret j
[1] Light field messaging with deep photographic steganography; Wengrowski, Dana K.; CVPR 2019

[2] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurlPS 2020.
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Universal Adversarial Perturbations Through the Lens of Deep
Steganography: Towards a Unified Fourier Perspective (AAAI 2021)

Chaoning Zhang*, Philipp Benz*, Adil Karjauv, In-So Kweon

* indicates equal contribution

Korea Advanced Institute of Science and Technology (KAIST)
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Universal Perturbations Dominate over Images

Human perception DNN perception

Cover Image (/) ' ?'. w
o O W »

Decoder DNN § .

Human perception DNN perception

Clean Image (/)

- Target DNN Garbage Truck

Container Image

|
|
|
|
|
|
|
|

Decoder DNN I Target DNN Red Panda
|
|
|

Decoder DNN : Target DNN Red Panda

Perturbation (P) : Perturbation (P)
|
Universal Data Hiding [1] Universal Adversarial Attack

There exists a misalignment between human vision and model perception
for both universal data hiding and universal adversarial attack

[1] UDH: Universal deep hiding for steganography, watermarking and light field messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurlPS 2020.
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Universal yet there exists class-wise discrepancy

For robust and non-robust classes, the targeted attack rate is
40% and 100% respectively.

3 most
>|  robust
classes

high
frequency

3 least ‘/’E.Haﬁ >[ low }

;ﬂumﬂ'ﬁ. - robust .--.-.-. requency
i | |® Nl

Considering the most and least robust classes against adversarial attack,
the most robust classes have relatively high frequency and
the least robust classes have relatively low frequency
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A Unified Frequency Perspective on UAP and UDH

(0}
/VVe order the 1000 classes in ImageNet based\ 500 T L vwf*,‘{"ﬁ
(a) Targeted attack rate (for UAP) % s00| % :3;}"{»“"3 Sty
(b) Secret APD (for UDH) 5 : ..\'}'“:'.,5.““‘
(c) Entropy of Fourier images (for frequency) g 250 3‘??'-33"';;;’.-2"5‘1.-"?"?:.;:'f'}:»l-f'
Surprisingly, we find that the ordering is highly 5 o BERGEAET T T
0 200 400 600 800 1000

\\correlated between two different tasks.
secret APD

)

What is the factor that determines this high correlation?
Frequency! Images from HF class are systematically more robust to UAP.

1000 ® e . '} ° 2 . 0 22,0 1000 - ® e B R X
e e EE R e RN
° . y . ..0 ... e :o bk 3 % ‘..'. ..'. o.. 2 g < : ® ..'o':: $..-.
750 ) Xl : ‘o ¥ .."0'. .l. :o*z'..o."..::o.’):g:::.eth 750 Yo o : ¢, O‘,. f‘; . .1..*’ .".\.'.“:: .
a 5% ’ e l. ’.;.: }.’. oo o‘:'.’..::.;'..l.’.(" ﬁh.... o é .. -... . o® .!'.:."o' o ® 'fo' .,n.. \.:
e o -.. : ~... . o‘. ou.-" :.\ g ..-'00. e P ® 00 > . - i .: s 'o.;. ...' S O...' 'o...' by :
£ 500/ 2 82 s 00 Vg LR N NTS S 2 S 500 .. K. :'.:".o\'k“.'.?'*.'."".\ £, e
2 e e B GRS R N 2 R S A IR
w ...o: "‘: 0}.';.’ '.;':::n: .i. 0..:..‘0. . Bl oo 0" d . ° \."’..' 4 ....‘ 3"?.‘ ° 0? ::'..’:".' Sop L]
250 | At el gt T SV : 250 | bt oeiteaing S Dol T
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600 800 1000

400 600 800 1000

Targeted Attack Rate

0 200

200
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secret APD
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Why do UAPs dominate images?

BW: 5 (FR: 14.5) BW: 10 (FR: 39.2) BW: 20 (FR: 47.2) BW: 35 (FR: 56.0) BW: 50 (FR: 64.1)
: -_— N D N [ y 7 N ] SRy

a N

The UAP fails when HF content is
removed.
On the contrary, removing LF content
from the UAP has trivial effect.

= j

.

wine_bottle pinwheel lacewing pinwheel brain_coral

BW: 0 (FR: 94.4) BW: 60 (FR: 90.1)  BW: 140 (FR: 85.0)  BW: 180 (FR: 74.2)  BW: 220 (FR: 70.0)
SRR RS / \E - S -

-~

UAPs (of smaller magnitude) dominate
images, why?

—DNNSs are sensitive to HF content
& UAPs have HF properties
\ /

brain_coral brain_coral lampshade window_screen
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Unlversal Secret Adversarlal Perturbatlon (USAP)

Encoder DNN ﬁj ; V€ A Decoder DNN

Secret Image (.5) USAP ( ) Container Image (C") Revealed Secret (S)

— “Spider Web”
Target DNN

— “Trolleybus”

Cover Image (C)




KAIST RCV Lab.

Takeaway

1. What you see is not what the machine sees

2. Joint Investigation and Explanation: Adversarial Attack & Data Hiding
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Thank You

Philipp Benz Chaoning Zhang
https://phibenz.qgithub.io https://chaoningzhang.github.io
pbenz@kaist.ac.kr chaoningzhang1990@amail.com
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