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Deep Learning is Awesome
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Overview of Adversarial Machine Learning

Adversarial machine learning: a technique attempting to fool models through malicious input.

1. Practical relevance: Can we trust the model for security sensitive applications?

2. Theoretical relevance: Understanding adversarial examples might give us insights about how deep 
neural networks work 



The Basics



Adversarial Examples
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● Perturbations of small magnitude
● Specially crafted through optimization techniques
● Imperceptible for humans

[1] Explaining and Harnessing Adversarial Examples; ICLR 2015

Deep Neural Networks are sensitive to small perturbations in the image, which can lead to 
misclassifications. These changes are mostly imperceptible for human observers.



Objective
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Adversarial Attack: Finding a small perturbation, to misclassify a sample 

The perturbation is smaller than magnitude ϵ 
Some distance metric L1, L2, Linf 

Misclassification

Obey image range



Distance metrics
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Measures the number of coordinates i such that 
Corresponds to the number of pixels that have been altered in an image.

Measures the standard Euclidean (root-mean-square) distance between x and x’. The L2 distance  
can remain small when there are many small changes to many pixels.

Measures the maximum change to any of the coordinates: 
For images, we can imagine there is a maximum budget, and each pixel is allowed to be changed  
by up to this limit, with no limit on the number of pixels that are modified.

L0 metric is rarely used. More and more papers are adopting the Linf metric for evaluation.



Adversarial Examples: Attack categories
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Untargeted Attack
The attack succeeds, if the target model makes a 

misclassification

Targeted Attack 
The attack succeeds, if the target model makes a 
misclassification which was specified beforehand

White-Box Attack
An attacker has full knowledge about the target

Black-Box Attack
An attacker has no knowledge about the target

Target
Model+x

δ

x’
f(x’)

Perturbation



White-box vs. Black-box
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Adversary has FULL knowledge 
about:
● Model e.g.

○ type of neural network
○ number of layers

● Training algorithm e.g 
○ SGD, ADAM etc.
○ Learning Rate

● Training data
● Model parameters

Adversary has NO knowledge 
about the model, training 
algorithm, training data, model 
parameters etc.
Commonly it is only assumed 
that the adversary can query the 
model 
Note: Different works define 
their “black-box” slightly 
different, so stay critical!

Adversary has SOME 
information. 
E.g. the adversary knows the 
network architecture, but no 
information about the exact 
parameters. 



Untargeted vs. Targeted
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+

Untargeted
The misclassified class can be any other 

than the currently classified class
In this example: any class other than 

dog, such as cat, car...

+

Targeted
The misclassified class can only be the 

target class
In this example: target class = Cat 



Adversarial Attacks



The FGSM attack

13

Target
Model

Fixed

Logit Vector

Fast Gradient Sign Method (FGSM) [1]
Stepping one step of step size ϵ into the gradient direction

Pro: Fast Con: Less effective

Forward Pass

ϵ: magnitude
 [1] Explaining and Harnessing Adversarial Examples; ICLR 2015



The PGD-attack
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Projected Gradient Descent (PGD)
Iteratively apply FGSM with step size α

Pro: Effective Con: iterative, thus time-consuming

Target
Model

Fixed

Logit VectorForward Pass

+

ϵ: magnitude
α: step size
 

Repeat

[1] Towards Deep Learning Models Resistant to Adversarial Attacks; ICLR 2018



Attack Techniques
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In the white-box setting the gradients of the model can be used to construct the adversarial perturbation
Fast Gradient Sign Method (FGSM) [1]

Stepping one step of step size ϵ into the gradient direction

Targeted FGSM [2]
Stepping one step of step size ϵ into the gradient direction of target class t

Projected Gradient Descent (PGD) [2,3]
Iteratively apply FGSM with step size α

Carlini & Wagner attack (C&W) [4]
Minimal perturbation to make the highest (h) logit Z() lower than the second highest one 

[1] Explaining and Harnessing Adversarial Examples; ICLR 2015
[2] Adversarial examples in the physical world; ICLR Workshop 2017 

[3] Towards Deep Learning Models Resistant to Adversarial Attacks; ICLR 2018
[4] Towards Evaluating the Robustness of Neural Networks; Symposium on Security and Privacy (SP) 2017
[5] DeepFool: a simple and accurate method to fool deep neural networks; CVPR 2016 

DeepFool [5]
Geometry-inspired approach to 
push a sample over the decision 

boundary 

Linear approximation of DNNs 
decision boundary

Pro: Fast Con: Less effective

Compared with non targeted FGSM, the targeted one flips the loss sign and replace gt with t

Pro: Effective Con: iterative, thus time-consuming

Pro: Minimal perturbation thus least visible Con: Relatively more complex for minimizing the perturbation and loss function

Pro: Geometry-inspired Con: Slow 



Real-world Attacks
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3D-printed adversarial objects [1]

[1] Synthesizing Robust Adversarial Examples; ICML 2018
[2] Adversarial Patch; 2017
[3] Delving into transferable adversarial examples and black-box attacks; ICLR 2017

Adversarial Patch [2]

Attacks on Traffic Signs [4]

[4] Robust Physical-World Attacks on Deep Learning Visual Classification; CVPR 2018
[5] Audio Adversarial Examples: Targeted Attacks on Speech-to-Text; 2018
[6] Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors; 2019

Black-Box attacks on 
web applications [3]

Audio Adversarial Examples [5] Adversarial Wearables [6,7]



3D-printed adversarial objects

17[1] Synthesizing Robust Adversarial Examples; ICML 2018

http://www.youtube.com/watch?v=YXy6oX1iNoA


Adversarial Defenses



Attack & Defense: A two-player game
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One player aims to attack the model; the other one tries to defend the model.
Who will win this game? It depends on the rules of the game.

The attacker does not know 
what the defender is doing

(Defender wins)

The attacker knows what 
the defender is doing

(Attacker wins) 



Defenses
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Input Modification
Manipulate the input to 

deweaponize the adversarial 
example

Network Modification
Adding parts to the network or 

modifying the layers for defense

JPEG Compression [3]

[1] Explaining and harnessing adversarial examples; ICLR 2015
[2] Generative Adversarial Trainer: Defense to Adversarial Perturbations with GAN; 2017
[3] Feature Distillation: DNN-Oriented JPEG Compression Against Adversarial Examples; 2018

Adding “pre-input” layers trained [5]

Feature Squeezing [4]

MagNet [6]

[4] Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks; NDSS 2018
[5] Defense against Universal Adversarial Perturbations; CVPR 2018
[6] MagNet: a Two-Pronged Defense against Adversarial Examples; CCS 2017

1 Easy defense: The attacker does not know what the defender is doing
Motivation: Denoising the image

2 Hard defense: The attacker knows what  the defender is doing
Motivation: Obfuscated gradients



Adversarial Training
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Normal Network Training Adversarial Training

Separating the L∞-balls requires a 
more complicated decision 

boundary. The resulting classifier is 
robust to adversarial examples with 

bounded L∞-norm perturbations.

Set of points that can be 
easily separated with a 
simple linear decision 

boundary

The simple decision boundary does not 
separate the L∞-balls (squares) around the 
data points →  adversarial examples (red 

stars) will be misclassified

Training a model (iteratively) with adversarial examples makes a model more robust.
So far adversarial training is the only method that is proven to really robustify a model. 

[1] Explaining and harnessing adversarial examples; ICLR 2015
[2] Towards Deep Learning Models Resistant to Adversarial Attacks; ICLR 2018



Robustness may be at odds with accuracy
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Trade-off between standard accuracy & adversarially robust accuracy 

[1] Robustness may be at odds with accuracy; ICLR 2019

Robustness
Accuracy



Universal Adversarial Perturbations



Image-dependant vs. image-agnostic
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[1] Intriguing properties of neural networks; Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus; ArXiv 2013
[2] Universal adversarial perturbations; Moosavi-Dezfooli, Fawzi, Fawzi, Frossard; CVPR 2017

+ =

=

=

+

+

Image Image-dependant 
perturbation

Adversarial Example

Image-dependant attacks
One perturbation is crafted to attack one specific image

Image-agnostic (universal) attacks
One perturbation is crafted to attack a set of images

UAP will be discussed in more detail again



Qualitative visualization

25[1] Universal Adversarial Perturbations; CVPR 2017

Images + UAP

Amplified UAP



Universal adversarial perturbations (UAPs)
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Fool most of the samples with a single 
perturbation

The perturbation is smaller than magnitude ϵ

Objective

One perturbation to fool most of the data samples



Classical DeepFool-based UAP
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[1] Universal adversarial perturbations; Moosavi-Dezfooli, Fawzi, Fawzi, Frossard; CVPR 2017
[2] Analysis of universal adversarial perturbations; Moosavi-Dezfooli, Fawzi, Fawzi, Frossard, Soatto; ArXiv 2017
[3] DeepFool: a simple and accurate method to fool deep neural networks; Moosavi-Dezfooli, Fawzi, Frossard; CVPR 2016

Figure 1: Schematic representation 
of the algorithm in [1] to compute 

universal perturbations. 

Algorithm:
● Craft single perturbation (via 

DeepFool [3]) to let one sample 
cross the decision boundary

● Iterate this process for different 
samples to aggregate the 
universal adversarial 
perturbation.



Practical Relevance of UAPs

Image-Dependent Adversarial Examples Universal Adversarial Examples

Have to be crafted on the spot for each sample 
(during inference) 

Can be crafted beforehand 
Only a simple summation is required during 

inference

UAPs are better suited for “real-world” attacks



1. The UAP attacks samples from every class without intended discrimination, which can easily cause suspicion

2. The UAP generation relies on the original training data & The reason for the existence of UAPs is still not well 
understood

3. Can the insight of UAPs be applied to the field of data hiding?

Our Research beyond classical UAP



1. The UAP attacks samples from every class without intended discrimination, which can easily cause suspicion
→ CD-UAP: Class-Discriminative Universal Adversarial Perturbations (AAAI 2020)
→ Double targeted universal adversarial perturbations (ACCV 2020)

2. The UAP generation relies on the original training data & The reason for the existence of UAPs is still not well 
understood
→ Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations (CVPR 2020)

3. Can the insight of UAPs be applied to the field of data hiding?
→ UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging (NeurIPS 2020)
→ Universal Adversarial Perturbations Through the Lens of Deep Steganography: Towards A Unified Fourier 
Perspective (AAAI 2021)

Our Research beyond classical UAP



CD-UAP: Class-Discriminative Universal Adversarial 
Perturbations (AAAI 2020)

Chaoning Zhang*, Philipp Benz*, Tooba Imtiaz, In-So Kweon
* indicates equal contribution

Korea Advanced Institute of Science and Technology (KAIST)



CD-UAP: Class-Discriminative Universal Adversarial Perturbations 
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Figure 1: Class Discriminative Universal Adversarial Perturbation (CD-UAP). After 
adding a single perturbation, model performance on a subset of classes is significantly 

reduced, while the influence on the non-targeted classes  is  limited. 

[1] CD-UAP: Class-Discriminative Universal Adversarial Perturbations; Zhang*, Benz*, Imtiaz, Kweon; AAAI 2020

An attack method to generate a universal perturbations that fool a target network to misclassify 
only a chosen group of classes, while having limited influence on the remaining classes.

Misclassify most samples from targeted classes

Keep original classification for most samples from 
non-targeted classes

The perturbation is smaller than magnitude ϵ



CD-UAP: Class-Discriminative UAP
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Evaluation metric: Absolute Accuracy Drop (AAD) for both targeted classes and non-targeted classes. 
ΔAAD=AADt - AADnt,  the higher the better.

[1] CD-UAP: Class-Discriminative Universal Adversarial Perturbations; Zhang*, Benz*, Imtiaz, Kweon; AAAI 2020

The 
higher
 the 

better

This loss combination is the best
LCE: Cross-entropy loss (Increase for Lt and decrease for Lnt)
LL: Logit loss (Decrease for Lt and increase for Lnt)
LBL: Bounded Logit Loss (Similar to C&W loss; Decrease for Lt 
and increase for Lnt)

S: targeted classes, [lowest class, highest class, step size], e.g.
[1:5:2] indicates targeted classes 1,3,5 and 
[0:4:1] indicates targeted classes 0,1,2,3,4



CD-UAP: Class-Discriminative UAP
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Further results on CIFAR100 and ImageNet

[1] CD-UAP: Class-Discriminative Universal Adversarial Perturbations; Zhang*, Benz*, Imtiaz, Kweon; AAAI 2020



Double targeted universal adversarial perturbations 
(ACCV 2020)

 Philipp Benz*, Chaoning Zhang*, Tooba Imtiaz, In-So Kweon
* indicates equal contribution

Korea Advanced Institute of Science and Technology (KAIST)



Double Targeted UAPs
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UAP to fool one targeted source class to a sink class, while having limited adversarial effect on 
other non-targeted source classes to avoid raising suspicion.

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020



Loss Design
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The loss consists of a targeted (Lt) and a non-targeted part (Lnt)

Objective of the targeted part: Fool the network by shifting the prediction from the source class into the sink class
This is broken down into two subtasks: 

(1) Decreasing the logit value for the originally predicted class Lp to not being the highest logit anymore
(2) Increasing the logit for the sink class Lsink, to be the highest logit

Objective of the non-targeted part: Achieve good classification performance
Adopt the cross-entropy function

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020



Algorithm
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A simple, yet effective algorithm

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020



Quantitative Results
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Table: Experimental results for the Double Targeted Attack (DTA) for the datasets CIFAR-10, 
GTSRB, EuroSAT, YCB and ImageNet under 10 scenarios S0 to S9. All numbers are reported in %.

κt: targeted fooling ratio for the targeted source samples κnt: targeted fooling ratio for the non-targeted source samples

DTA achieves reasonable performance for different mapping scenarios on a wide range of datasets.

1. The targeted fooling ratio for the targeted classes (κt) is reasonably high. 
2. A significant gap between κt and κnt indicates that the crafted perturbation is discriminative between targeted class and 

non-targeted classes

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020



Multi2One attack
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Attack multiple source classes (MS) to be misclassified as one sink class.

Table: Experimental results for the universal Multi2One targeted perturbation on 
ImageNet under 4 scenarios MS0 to MS3 attacking three source classes to one 

sink class. All numbers are reported in %.

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020



Qualitative Results
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Figure: Examples of adversarial perturbations for various datasets and networks. The confidence values 
of the network and the predicted labels are stated above the images. The target network is indicated 

above the amplified perturbation.

original images

amplified version of the 
corresponding 
perturbations

adversarial example

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020



Physical Attack - Double Targeted Patch
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Table: Quantitative results for the generated DT-Patch on ImageNet

Figure: Real-world examples of the DT-Patch for the three different scenarios

[1] Double targeted universal adversarial perturbations; Benz*, Zhang*, Imtiaz, Kweon; ACCV 2020



Understanding Adversarial Examples from the Mutual Influence 
of Images and Perturbations (CVPR 2020)

Chaoning Zhang*, Philipp Benz*, Tooba Imtiaz, In-So Kweon
* indicates equal contribution

Korea Advanced Institute of Science and Technology (KAIST)



Background: Adversarial Examples are not Bugs they are Features
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Figure 1: Disentanglement of features into combinations of 
robust and non-robust features [1]

Figure 2: A dataset appearing mislabeled to humans (via 
adversarial examples) can results in good accuracy on the 

original test set [1]

Adversarial Examples can be directly attributed to the presence of 
non-robust features [1]

[1] Adversarial Examples Are Not Bugs, They Are Features; Ilyas, Santurkar, Tsipras, Engstrom, Tran, Madry; NeurIPS 2019



Background: Adversarial Examples are not Bugs they are Features
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The existence of adversarial examples can be attributed to the existence of Non-robust features in the dataset.

[1] Adversarial Examples Are Not Bugs, They Are Features; Ilyas, Santurkar, Tsipras, Engstrom, Tran, Madry; NeurIPS 2019



PCC Analysis
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The Pearson correlation coefficient (PCC) is a widely adopted metric to measure 
the linear correlation between two variables. 

The PCC between different DNN output logit vectors can be calculated. 
This provides insight about the “stronger” contribution of the two inputs to the final outcome. A higher PCC value 

indicates the more significant contributor.
[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020



Treat the DNN logits as a vector for feature representation and use them to analyze the mutual influence of two 
independent inputs based on the Pearson correlation coefficient (PCC)

PCC Analysis
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“Universal perturbations 
contain dominant features, 

and images behave like 
noise to them”

PCC-Analysis result for one sample image `lorikeet'. Three scenarios of input combinations are considered: 
1: image + noise; 2: image + targeted UAP; 3: image + targeted image-dependant AE. The columns show 

input a, input b, input c=a+b, logit vector analysis of L_c over L_a and vector analysis of L_c over L_b

a b c=a+b

a b c=a+b

a b c=a+b

Image-dependant 
perturbations seem to 
not contain features by 

themselves

PCC: 0.97

PCC: 0.06

PCC: 0.62 PCC: 0.25

PCC: 0.95

PCC: 0.21

La Lb

La Lb

La Lb

Lc

Lc

Lc Lc

Lc

Lc

[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020



Noise Perspective vs. Feature Perspective
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● Treat the targeted UAP as noise (“bug”) to the 
sample to be attacked

● Requires the samples from the training 
dataset in the UAP generation process

● Explicitly designed to let individual samples 
cross the decision boundary

● Assumes that the attack generalizes to 
unseen samples

Feature Perspective (Ours)Noise Perspective (Prior works) 

● UAPs contain features of a certain class

● Treatment of the images as noise to the 
generated UAP during the optimization process 
in order to be recognizable by the target 
network

● No need for semantic features as in the 
original training dataset samples

● Proxy datasets as background noise: 
Downloaded from the Internet, MS-COCO, 
Pascal VOC, Places365

Requires the original training dataset
Slow: ~2 hours

Requires no original training dataset
Fast: ~2 minutes

[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020



Data-free Targeted UAP 
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If images just behave like noise to the features in UAPs. Can we just use another dataset 
to craft UAPs? Yes we can!

ImageNet 
pretrained

UAP generation stage

UAP testing stage

Is the sample misclassified? 
Good

Is the sample correctly classified? 
Bad

Test the 
perturbation on the 
ImageNet validation 

dataset

Craft the perturbation with the 
help of some proxy dataset

As a loss function you can use 
the cross-entropy between the 

output logit and some (randomly 
chosen) target class. 

For example: Choose target 
class sea lion

Sea Lion

Adversarial 
Examples

Images
Universal 

Adversarial Perturbation

Classifier
Sea Lion

Sea Lion

Figure 1: Inference with adversarial examples formed with a targeted universal 
adversarial perturbation crafted for target class “sea lion”.

[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020



Data-free Targeted UAP: Results 
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Table 2: Comparison to other methods. The results are divided 
in universal attacks with access to the original ImageNet 
training data (upper) and data-free methods (lower). The 

metric is reported in the non-targeted fooling ratio (%)

[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020

The proposed approach outperforms 
previous data-dependant and data-free UAP 

generation methods



Can you see the features?

51[1] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020

The UAPs were generated for target class sea lion. Sea lion features become visible in the UAPs!



UDH: Universal Deep Hiding for Steganography, Watermarking 
and Light Field Messaging

Chaoning Zhang*, Philipp Benz*, Adil Karjauv*, Geng Sun, In-So Kweon
* indicates equal contribution

Korea Advanced Institute of Science and Technology (KAIST)
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What you see is not what the machine sees
Perturbed ImageOriginal Image Perturbation

(Cat feature)

Dog!

Cat!

What?
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Decode

What you see is not what the machine sees
Perturbed ImageOriginal Image Perturbation

(Cat feature)

Dog!

Cat!

No!

Yes!

Encode

What?

Secret?Perturbation (Encoded 
secret)
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Digital Steganography
● Definition: Hiding secret message within a digital file, such as images or videos. 
● Challenge: Trade-off between Capacity vs. secrecy

Encoding

Secret Message

Cover Image

Decoding

Recovered 
secret message

Container Image



Problems of existing solutions

Secret: Binary message (<0.5 bits per pixel)
Requires perfect encoding/decoding
Evading steganalysis is important

Cover Image

Secret Image

Preparation 
Network

Hiding
Network

Reveal
Network

Traditional steganography vs. Deep steganography

Secret: a full image (24 bits per pixel)
Highlighting visual quality
Inevitable to be detected due to high capacity

Traditional Steganography Deep Steganography [1]

Hiding Images in Plain Sight: Deep Steganography [1]

Preparation network is not absolutely necessary 

How the secret image is encoded is dependent 
on the cover image

[1] Hiding images in plain sight: Deep steganography; Baluja; NeurIPS 2017

Container Image Revealed Secret Image



Deep Neural Networks are sensitive to invisible perturbations, leading to misclassifications. 
Universal adversarial perturbations exists to fool most images.

[1] Explaining and Harnessing Adversarial Examples; Goodfellow, Shlens, Szegedy; ICLR 2015
[2] Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; Zhang*, Benz*, Imtiaz, Kweon; CVPR 2020

Sea Lion

Adversarial 
ExamplesImages

Universal 
Adversarial Perturbation [2]

Classifier

Image Image-dependent 
Adversarial Perturbation [1] 

Adversarial 
Example

Gibbon
Cover-Dependent 

Deep Hiding 
(Existing DDH)

Universal
Deep Hiding
(Our UDH) 

Sea Lion

Sea Lion

Classifier



● Comparable performance as DDH
● Facilitating visualization of how secret image is 

encoded.

Receiver SideSender SideCover image

Container image

Secret image

Hiding
Network

Send Revealing
Network

Revealed secret image

Universal Deep Hiding (UDH)
A novel Deep Hiding meta-architecture to hide  secret image in a 

cover-agnostic manner. 

Container image

A secret image is fed to the hiding network to yield an encoded secret image, which can be added to a random cover 
image to form a container image. The revealing network then retrieves the secret image from the container.

Encoded secret image

[1] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurIPS 2020.



The Hiding network encodes secret image in high-frequency representation.
The reveal network easily extracts high-frequency encoded secret image from container

Encoded secret imageSecret image

Encoded secret imageSecret image

Figure 1: Local encoding. Influence of 
setting one pixel in the secret image to 

zero on the encoded secret image.

Figure 3: A secret image and its corresponding encoded secret image with 
zoomed patches for a (universal) hiding network trained in pair with the 
fixed reveal network from the DDH meta architecture.

Figure 2: A secret image and its corresponding encoded secret image with 
zoomed patches for the UDH meta architecture.

[1] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurIPS 2020.



Beyond hiding one image in one image
Hiding M Images in N Images

● Hiding many images in few images
● Hiding 2 color images in one gray 

image

Different Secrets for Different Recipients
Hiding multiple secret images in one cover so that different 

recipients retrieve their respective secrets

6 
im

ag
es

 h
id

de
n 

in
 3

 im
ag

es

[1] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurIPS 2020.



Watermarking
● Definition: Hiding secret message for proving the ownership
● Challenge: robustness to distortions

Photographic steganography or Light Field Messaging (LFM)
● Definition: Hiding and transmitting secret message by taking a photo 

on screen display
● Challenge: robustness to light effect

Beyond Digital Steganography

With the UDH, we are the first to demonstrate the 
possibility of hiding a full image for both applications.

[1] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurIPS 2020.



Universal Deep Watermarking
With the generated universal watermark, it requires only 
one summation to watermark one image, UDH is well 
suited to handle large amounts of images.

[1] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurIPS 2020.



Light Field Messaging (Photographic Steganography)
UDH has the following advantages over DDH based LFM [1]: 

1. No need to collect a 1.9TB dataset
2. No overfitting to certain hardware 
3. Significantly better performance
4. Being versatile for hiding both barcode and full image 

[1] Light field messaging with deep photographic steganography; Wengrowski, Dana K.; CVPR 2019
[2] UDH: Universal Deep Hiding for Steganography, Watermarking and Light Field Messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurIPS 2020.



Universal Adversarial Perturbations Through the Lens of Deep 
Steganography: Towards a Unified Fourier Perspective (AAAI 2021)

Chaoning Zhang*, Philipp Benz*, Adil Karjauv, In-So Kweon
* indicates equal contribution

Korea Advanced Institute of Science and Technology (KAIST)



Universal Perturbations Dominate over Images 

Universal Data Hiding [1] Universal Adversarial Attack

There exists a misalignment between human vision and model perception
for both universal data hiding and universal adversarial attack

[1] UDH: Universal deep hiding for steganography, watermarking and light field messaging. Zhang*, Benz*, Karjauv*, Sun, Kweon, NeurIPS 2020.



Universal yet there exists class-wise discrepancy

3 most 
robust 

classes

3 least 
robust 

classes

high 
frequency

low 
frequency

For robust and non-robust classes, the targeted attack rate is 
40% and 100% respectively.

Considering the most and least robust classes against adversarial attack, 
the most robust classes have relatively high frequency and 

the least robust classes have relatively low frequency



A Unified Frequency Perspective on UAP and UDH 

What is the factor that determines this high correlation?
Frequency! Images from HF class are systematically more robust to UAP.

We order the 1000 classes in ImageNet based 
on three metrics:
(a) Targeted attack rate (for UAP)
(b) Secret APD (for UDH)
(c) Entropy of Fourier images (for frequency)
Surprisingly, we find that the ordering is highly 
correlated between two different tasks.



Why do UAPs dominate images?

The UAP fails when HF content is 
removed.

On the contrary, removing LF content 
from the UAP has trivial effect.

UAPs (of smaller magnitude) dominate 
images, why?

→DNNs are sensitive to HF content
& UAPs have HF properties



Universal Secret Adversarial Perturbation (USAP)



1. What you see is not what the machine sees

2. Joint Investigation and Explanation: Adversarial Attack & Data Hiding

Takeaway



Thank You
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