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Deep learning is Awesome
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Deep Classifiers
Classification is one of the most fundamental tasks in machine learning.

After the advent of Deep Learning, Deep Classifiers dominate the field of image classification.

One fundamental concern about Deep Classifiers is their robustness.

Performance Evaluation of Deep Classifier on the ILSVRC-2012 validation set

6
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[1] Explaining and Harnessing Adversarial Examples; Goodfellow, Shlens, Szegedy; ICLR 2015
[2] Intriguing properties of neural networks; Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus; arXiv 2013

Intriguing Adversarial Examples

One of the earliest and simplest adversarial attack methods is the Fast Gradient Sign Method (FGSM) [1]

Results on Googlenet

7

Deep Neural Networks are sensitive to small perturbations in the image, which are specially 
crafted to deteriorate performance and to be mostly imperceptible for human observers.
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Performance Degradation with the simple FGSM attack

Allowable perturbation magnitude ε = 8/255, for images in range [0,1]

8
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Adversarial Machine Learning and Beyond (Recap)
https://www.youtube.com/watch?v=ylEE1HtGNJc 
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https://www.youtube.com/watch?v=ylEE1HtGNJc
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Results presented in the proposal

Features Noise Noise Features

Previous Belief New Perspective

Cover Images Container Image

Secret Image

Secret Perturbation
(Encoded Secret)

Revealed Secret Image

Send

Encoder 
Network

Decoder 
Network

Sensitive to 
low-frequency content

Sensitive to 
high-frequency content

A Frequency Understanding on Targeted UAPs

Data-free targeted UAPs An Alternative Perspective on UAPs

UAPs are features and images behave like noise to them

In contrary to human, DNN is more sensitive to high-frequency content

Towards Universal Deep Hiding

Steganography, Watermarking, and Light field messaging

10

DNN

Simple, Fast and Effective
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Treat the DNN logits as a vector for feature representation and use them to analyze the mutual influence of two 
independent inputs based on the Pearson correlation coefficient (PCC)

An Alternative Perspective on UAPs

“Universal perturbations 
contain dominant features, 

and images behave like 
noise to them”

PCC-Analysis result for one sample image `lorikeet'. Three scenarios of input combinations are considered: 1: image + noise; 2: image + targeted 
UAP; 3: image + targeted image-dependant AE. The columns show input a, input b, input c=a+b, logit vector analysis of L_c over L_a and vector 

analysis of L_c over L_b

a b c=a+b

a b c=a+b

PCC: 0.97

PCC: 0.06 PCC: 0.95

PCC: 0.21
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Features Noise Noise Features

Previous Belief Our Perspective
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Data-free Targeted UAPs

ImageNet 
pretrained

If images behave like noise to the features in UAPs, we can leverage a proxy 
dataset to craft UAPs

Fast
Our algorithm takes ~2 minutes vs. ~2 hours 

for the vanilla UAP algorithm

12

Table 1: Comparison to other methods. The results are 
divided in universal attacks with access to the original 
ImageNet training data (upper) and data-free methods 
(lower). The metric is reported in the non-targeted fooling ratio 
(%)
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(Targeted) Universal Adversarial Attack

Why does such small universal perturbation dominate images?
DNN is highly sensitive to high-frequency patterns

A Frequency Understanding on Targeted UAPs

13
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● Comparable performance as DDH
● Facilitating visualization of how secret image is 

encoded.

Receiver SideSender SideCover image

Container image

Secret image

Hiding
Network

Send Revealing
Network

Revealed secret imageContainer image

Encoded secret image

Universal Deep Hiding (UDH)
A novel Deep Hiding meta-architecture to hide a secret image in a 

cover-agnostic manner.

A secret image is fed to the hiding network to yield an encoded secret image, which can be added to a random cover 
image to form a container image. The revealing network then retrieves the secret image from the container.

14
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Universal Deep Hiding (UDH)
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Steganography

Watermarking

Light field messaging
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Adversarial Attacks
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Adversarial attack: Definition and Goal
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The perturbation is smaller than magnitude ϵ 
D is some distance metric L1, L2, Linf 

Finding a Small perturbation that misclassifies a sample

Misclassification

Obey image range

Dog
Cat
Plane

Car
House

Bird
Horse

Dog
Cat

Plane
Car

House
Bird

Horse

Untargeted scenario: Misclassify to any 
other class

Targeted scenario: Misclassify to a predefined 
target class (Cat for instance)

subject to
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White-box Attacks

Picture Source: Team Panda, Class 1: Intro to Adversarial Machine Learning, <https://secml.github.io/class1/> 
Reference: Chakraborty, Anirban et al. “Adversarial Attacks and Defences: A Survey.” ArXiv abs/1810.00069 (2018): n. pag.

● In white-box attack, an adversary has total knowledge about the model used for classification (e.g., 
type of neural network along with number of layers). 

● The attacker has information about the algorithm used in training (e.g., gradient-descent 
optimization) and can access the training data distribution. Also knows the parameters of the fully 
trained model architecture. 

● The adversary utilizes available information to identify the feature space where the model may be 
vulnerable, i.e, for which the model has a high error rate. Then the adversary can make full use of 
the network information to carefully craft adversarial examples.

Black Grey White
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Black-Box Attacks

● Black-Box attack, assumes no knowledge about the model and uses information about the settings 
or past inputs to analyse the vulnerability of the model. For example, the adversary exploits a model 
by providing a series of carefully crafted inputs and observing outputs.

● Based on whether an attacker needs to query the victim model, there are query-free (transfer-based) 
and query-based attacks.

● Transferability is critical for Black-Box attacks where the victim model and the training data are not 
accessible. Attackers can train a substitute (source) model and then generate adversarial examples 
against substitute model. Then the victim model will be vulnerable to these adversarial examples 
due to transferability.

Reference: Yuan, Xiaoyong, et al. "Adversarial examples: Attacks and defenses for deep learning." IEEE transactions on neural networks and learning systems 30.9 (2019): 2805-2824.
Li, Huichen, et al. "QEBA: Query-Efficient Boundary-Based Blackbox Attack." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
Picture Source: Rey Reza Wiyatno, Tricking a Machine into Thinking You’re Milla Jovovich, <https://medium.com/element-ai-research-lab/tricking-a-machine-into-thinking-youre-milla-jovovich-b19bf322d55c>

https://medium.com/@rey.wiyatno?source=post_page-----b19bf322d55c--------------------------------
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Transferability of Adversarial Perturbations 
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Transferable Adversarial Examples

Transferable Property (Model-agnostic) [1]
One perturbation generated on one network (source), 

transfers to another unseen one (target)

Source 
Model

Generation
“panda” “gibbon”

Original Image

Target Model “gibbon”

Adversarial Example (AE)

White-box Scenario

Black-box Scenario

Adversarial Example (AE)

Transferable perturbations require no
access to the target model.

[1] Adversarial machine learning at scale; Kurakin, Goodfellow, Bengio; ICLR 2017

21
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Background: FGSM attack
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Target
Model

Fixed

Logit Vector

Fast Gradient Sign Method (FGSM) [1]
Stepping one step of step size ϵ into the gradient direction

Pro: Fast Con: Less effective

Forward Pass

ϵ: magnitude
 

[1] Explaining and Harnessing Adversarial Examples; ICLR 2015
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Background: I-FGSM attack
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Iterative FGSM (I-FGSM)
Iteratively apply FGSM with step size α

Pro: Effective Con: less transferable

Target
Model

Fixed

Logit VectorForward Pass

+

α: step size
α = ϵ/T, where T 
indicates total 
iterations

 

Repeat

[1] Towards Deep Learning Models Resistant to Adversarial Attacks; ICLR 2018
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Popular techniques to increase transferability: MI-FGSM
Momentum Iterative Fast Gradient Sign Method (MI-FGSM)

Use the momentum term to increase adversarial transferability

The success rates (%) of non-targeted adversarial attacks against seven models

[1] Boosting Adversarial Attacks with Momentum; Dong, Liao, Pang, Su, Zhu, Hu, Li;CVPR 2018

μ: Decay Factor 

24
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Popular techniques to increase transferability: DI2-FGSM
Diverse Inputs Iterative Fast Gradient Sign Method (DI2-FGSM)

Applies random and differentiable transformations Tr, e.g. random resizing, random padding to the input images

Comparison of success rates. The ground-truth “walking stick” is shown in pink. The 
adversarial examples are crafted on Inception-v3. DI2-FGSM attacks the white-box 

model and all black-box models successfully.
[1] Improving Transferability of Adversarial Examples with Input Diversity; Xie, Zhang, Zhou, Bai, Wang, Ren, Yuille; CVPR 2019

Relationships between different attacks

μ: Decay Factor
N: # of Iterations

p: Probability of transformation

25



Robotics and 
Computer Vision Lab

Popular techniques to increase transferability: TI-FGSM

Optimizes a perturbation over an ensemble of translated images. 
This method can be implemented by convolving the gradient at the untranslated image with a predefined kernel.

Translation Invariant Fast Gradient Sign Method (TI-FGSM)

[1] Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks; Dong, Pang, Su, Zhu; CVPR 2019

26
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On Strength and Transferability of Adversarial Examples: Stronger Attack 
Transfers Better

Chaoning Zhang∗, Philipp Benz∗, Adil Karjauv∗, In So Kweon
Korea Advanced Institute of Science and Technology (KAIST)

27

RobustML workshop paper at ICLR 2021
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Metric of Attack Strength (Transferability)

The relationship between adversarial 
strength and transferability is still unclear

White-Box Model Black-Box Model

Mainly relying on attack success rate to evaluate adversarial 
strength and/or transferability 

Conventional Attack Success Rate (ASR): Percentage of images being misclassified after attack 
Drawback: Treating every misclassification equally.

No Attack 

top 1

Weak attack 

top 2

GT class: 
Swiss Greater mountain dog 

With the metric of ASR@k, a sample is successfully 
attacked if and only if the GT class is ranked higher than k. 

Stronger attack

top 5

28

Conventional ASR (ASR@1)

Proposed ASR@k

Equally treated  in the 
conventional ASR metric 
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Our Contributions 
A new loss for boosting semantic adversarial strength 

based on Geometry Perspective on loss design

ICR attack strength is 
transferable?

A unified simple metric to evaluate the 
ASR@k strength and/or transferability

Sort

D
escen

d
in

g O
rd

er Rank: 5

Interest class

Transfer-based 
stronger attack

Interest Class Rank (ICR)

29



Robotics and 
Computer Vision Lab

Logit Vector Gradient Derivative

We calculate the derivative of various common losses with respect to logit vector  Z. Y
gt

 is the 
ground-truth one-hot vector and P indicates the post-softmax probability vector Y

LL
 indicates one-hot 

label of the least likely class, and                                     indicates the highest class except the gt class

Loss Type Logit vector gradient Sample value
(x,y,z) = (1, 0.2, -1.2)

Cross Entropy (CE) (-0.36, 0.29, 0.07)

Carlini & Wagner (CW) (-1.00, 1.00, 0.00)

CE (LL: Least Likely) (0.64, 0.29, -0.93)

Relative RCE (RCE) (-0.66, 0.33, 0.33)

30



Robotics and 
Computer Vision Lab

Geometric illustration of the logit gradient with 3 classes
Given a logit vector (x, y, z), they can be represented in the 
3-D space, assuming three logits are independent.

3-D space 2-D hyperplaneZero-sum: x + y + z = 0

RCE: find the opposite direction 
to shift far from class A.

Interest class: A
Class A: (2, -1, -1)
Class B: (-1, 2, -1)
Class C: (-1, -1, 2)

31

Loss Type Gradient vector
(x,y,z) = (1, 0.2, -1.2)

Cross Entropy (CE) (-0.36, 0.29, 0.07)

Carlini & Wagner (CW) (-1.00, 1.00, 0.00)

CE (LL: Least Likely) (0.64, 0.29, -0.93)

Relative RCE (RCE) (-0.66, 0.33, 0.33)
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Strongest White-box Attack with All Metrics

FDA[1] is the existing SOTA approach.
RCE loss achieves the strongest attack among all losses for all metrics except for NLOR with CE(LL).

32

[1] FDA: Feature Disruptive Attack; Ganeshan, Vivek, Babu; CVPR 2019

OLNR: Old Label New Ranking
NLOR: New Label Old Ranking
NRT: Normalized Rank Transformation
CosSim: Cosine Similarity
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ICR Results for Non-targeted and Targeted Attack

33

Non-targeted ICR:
higher is better

Targeted ICR:
lower is better

RCE loss outperforms other common losses in both non-targeted and targeted settings
with the ICR metric
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Towards Simple Yet Effective Transferable Targeted Adversarial Attacks

34

RobustML workshop paper at ICLR 2021

Philipp Benz*, Chaoning Zhang∗, Adil Karjauv, In So Kweon
Korea Advanced Institute of Science and Technology (KAIST)
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Techniques for Improving Transferability - Noise Augmentation

35

Input Noise Augmentation

Feature Noise Augmentation

Two simple techniques to improve transferability
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The targeted CE loss only maximizes the probability of the target class without explicitly 
encouraging the sample to decrease the probability of the ground-truth class.

Conjecture: The effectiveness of adversarial examples can be increased by not only increasing the 
logit of the target class but also decreasing the probability of the ground-truth class.

Push-Pull (PP) loss -- Combination of two CE losses:

● One for pushing the sample far from the ground-truth class (CE
gt

), i.e. non-targeted CE loss
● One for pulling the sample close to the target class (CE

tar
), i.e. targeted CE loss

36

Techniques for Improving Transferability - Push-Pull Loss

Z: Output logit
y

gt
: ground-truth one-hot label 

y
tar

: target one-hot label
β: balancing weight for the two CE losses
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Performance evaluation in the non-targeted attack setting with a single substitute model, i.e. DenseNet121. 
The results are reported in the ASR (%) for various baselines: MI, TI, DI, MI-DI-TI. All experiments were 

performed with the non-targeted CE loss

Transfer-based attack in non-targeted setting

37

Noise and Feature Augmentation as well as their combination improve adversarial transferability
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Transfer-based Targeted Attacks - Single Surrogate

38

Non-targeted ASR/targeted ASR for a targeted MI-DI-TI attack with a single substitute model (ResNet50) in 
the targeted attack scenario.

The Push-Pull Loss itself and in combination with noise and feature augmentation improve 
adversarial transferability in the single surrogate scenario
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Transfer-based Targeted Attacks - Ensemble Surrogate

39

Non-targeted ASR/Targeted ASR for a targeted MI-DI-TI attack with an ensemble of two substitute models.

The Push-Pull Loss itself and in combination with noise and feature augmentation improve 
adversarial transferability in the ensemble surrogate scenario
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Robustness Comparison of Vision Transformer and 
MLP-Mixer to CNNs

40

Philipp Benz*, Chaoning Zhang*, Soomin Ham*, Adil Karjauv, In So Kweon
Korea Advanced Institute of Science and Technology (KAIST)

CVPR 2021 Workshop on Adversarial Machine Learning in 
Real-World Computer Vision Systems and Online Challenges (AML-CV)
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Convolutional Neural Networks & Fully Connected Neural Networks

CNN FC

FC reacts differently to an input image and its shifted version.
- Ignores the information brought by pixel position and 

correlation with neighbors.
- Cannot handle translation (shift-variant)

CNN is locally connected and sharing weights by convolving kernels.
- Consists of convolutional layers followed by pooling layer
- Shift-invariant

Picture Source: Matthew Stewart, Simple-introduction-to-convolutional-neural-networks, <https://towardsdatascience.com> and 

Christian wolf, what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it, <https://chriswolfvision.medium.com>

https://medium.com/@matthew_stewart
https://towardsdatascience.com/
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Vision Transformers [1]

[1] Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).
[2] Vaswani, Ashish, et al. "Attention is all you need." arXiv preprint arXiv:1706.03762 (2017).

Vision Transformer splits the input image into patches and feeds the linear embedding 
sequence of these patches as inputs to the Transformer[2]. Image patches are 
processed in the same way as token(word) in NLP applications.
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MLP-Mixer [3]

Mixer architecture clearly separates the per-location (channel-mixing) operations and 
cross-location (patch-mixing) operations. Both operations are implemented with MLPs.

patch-mixing

channel-mixing

[3] Tolstikhin, Ilya, et al. "Mlp-mixer: An all-mlp architecture for vision." arXiv preprint arXiv:2105.01601 (2021).



Robotics and 
Computer Vision Lab

44

Overview

- Despite the success of CNNs, they remain vulnerable to adversarial examples whose small 
additive perturbations of the input cause the CNN to misclassify a sample.

- Due to the rather recent introduction of the ViT and Mixer architecture, the adversarial 
vulnerability of these novel architectures has not been well studied yet. 

- This work sets out to explore and analyze the adversarial vulnerability of ViT and 
Mixer architectures and compare the findings against the CNN models. 
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Methodology

● Models and Dataset 
- ViT-B/16, ViT-L/16
- Mixer-B/16, Mixer-L/16
- ResNet18 (SWSL), ResNet50 (SWSL),

       ResNet18 (SSL), ResNet50 (SSL),
       ResNet18, ResNet50

● Test on NeurIPS 2017 adversarial challenge dataset
- ImageNet-compatible dataset composed of 1,000 images in 430 classes.
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Robustness Against White-Box Attacks

Attack Success Rate (ASR): Percentage of samples which were classified differently from the ground-truth class

ViT & Mixer have a lower attack success rate compared with the CNN architecture 
Lower l2-norm for the C&W and DeepFool attacks when applied to the CNNs

→ViT & Mixer are more robust 
Exception: Mixer model exhibits increased vulnerability to very small perturbations

Clean accuracy on NeurIPS & ImageNet dataset, the attack success rate (%) of PGD and FGSM under l∞ distortion, and the l
2
-norm of C&W and DeepFool
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ViT and Mixer models are more robust, indicated by the relatively higher l2-norm of the 
adversarial perturbation

We test 100 random samples from NeurIPS dataset, and the l2-norm of adversarial perturbation is presented

Robustness Against Black-Box Attacks 
❏ Query-based

[1] Brendel et al.; Reliable attacks against black-box machine learning models; ICLR 2018 

Boundary Attack: A decision-based attack that starts from a large adversarial perturbation and then seeks to reduce the perturbation 
while staying adversarial. [1]
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Adversarial examples from the same family (or similar structure) exhibit higher transferability, suggesting models from 
the same family learn similar features.

When a different model architecture is used as the source model, there is also a trend that CNNs are relatively more 
vulnerable (i.e., transfer poorly toward foreign architectures).

We report the attack success rate (%) and a model with a lower ASR is considered to be more robust.

Robustness Against Black-Box Attacks 
❏ Transfer-based
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Toy Example

Images for the binary classification toy example

Binary classification: Horizontal and vertical black stripe on a black background

Train a Fully Connected network (FC), a Convolution Neural Network (CNN), and a Vision 
Transformer (ViT) on the images of similar (small) capacity

Evaluation with the C&W and DDN attack for the models trained on the toy example

The CNN is also less robust than the FC and the ViT in this toy example setup
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Explanation from the perspective of shift-invariance

● ViT: square patches → likely due to the division of the input image into patches in the ViT architecture
● CNN: repeated stripes
● FC: only a single stripe in the center

Adversarial examples and perturbations generated against C&W attack using different architectures trained on toy example.
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Explanation from the perspective of shift-invariance

Adversarial examples and perturbations generated against C&W attack using different architectures trained on toy example.

Due to shift-invariance, CNN has perturbations all over the image (in the direction of the opposite class’ stripe),
and the other models have perturbations only in the middle part. → lower l2-norm refers to less robust 
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Summary & Take Aways

● An empirical study on the adversarial robustness comparison of ViT and MLP-Mixer to the widely used 
CNN on image classification.

- White-box adversarial attack
- Black-box adversarial attack (query-based and transfer-based)
- Toy example on binary classification
- Frequency Analysis

● ViT is significantly more robust than CNN, and Mixer is generally located between ViT and CNN.

● The lower robustness of CNN can be partially attributed to the shift-invariant property of CNNs.
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Thank You


