Adversarial Transferability and Beyond

Philipp Benz Chaoning Zhang
https://phibenz.github.io https://chaoningzhang.github.io

i 30

R C V Robotics and 1 I(AI ST
Computer Vision Lab




Author Introduction

£y

- Q

Philipp Benz Chaoning Zhang
https://phibenz.github.io https://chaoningzhang.github.io
phibenz@gmail.com chaoningzhang1990@gmail.com

We are Ph.D. students from the Robotics and Computer Vision (RCV) lab at KAIST in South Korea
Adversarial machine learning (AML) is our main research field.

We are always looking for research collaborators!
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Author Introduction

Selected recent works on AML (2020-2021):

1. Universal Adversarial Training with Class-Wise Perturbations; ICME 2021
2. A Survey on Universal Adversarial Attack, JCAI 2021
3. Universal Adversarial Perturbations Through the Lens of Deep Steganography: Towards a Fourier Perspective; AAAI 2021
4. Revisiting Batch Normalization for Improving Corruption Robustness; WACV 2021
5. UDH: Universal Deep Hiding for Steganography, Watermarking, and Light Field Messaging; NeurlPS 2020
6. Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations; CVPR 2020
7. Double Targeted Universal Adversarial Perturbations; ACCV, 2020
8. CD-UAP: Class Discriminative Universal Adversarial Perturbations; AAAI 2020
9. Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs; CVPR-W 2021 (Outstanding paper award)
10. The Triangular Trade-off Between Accuracy, Robustness, and Fairness; CVPR-W 2021
11. Backpropagating Smoothly Improves Transferability of Adversarial Examples; CVPR-W 2021
12. Is FGSM Optimal or Necessary for SL\inftyS Adversarial Attack? CVPR-W 2021
13. Stochastic Depth Boosts Transferability of Non-Targeted and Targeted Adversarial Attacks; ICLR-W 2021
14. On Strength and Transferability of Adversarial Examples: Stronger Attack Transfers Better; ICLR-W 2021
15. Towards Data-free Universal Adversarial Perturbations with Artificial Jigsaw Images; ICLR-W 2021
16. Batch Normalization Increases Adversarial Vulnerability and Decreases Adversarial Transferability: A feature perspective; ICLR-W 2021
17. Towards Simple Yet Effective Transferable Targeted Adversarial Attacks; ICLR-W 2021
18. Robustness May Be at Odds with Fairness: An Empirical Study on Class-wise Accuracy; NeurlPS-W 2021
19. Data from Model; CVPR-W 2020
20. Universal Adversarial Perturbations are Not Bugs, They are Features; CVPR-W 2020
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Introduction
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Deep learning is Awesome
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Deep Classifiers

Classification is one of the most fundamental tasks in machine learning.
After the advent of Deep Learning, Deep Classifiers dominate the field of image classification.

Performance Evaluation of Deep Classifier on the ILSVRC-2012 validation set
80.00%
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40.00%
20.00%

0.00%

AlexNet GoogleNet VGG19 ResNet50 ResNeXt50 DenseNet201 WideResNet50

One fundamental concern about Deep Classifiers is their robustness.
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Intriguing Adversarial Examples

Deep Neural Networks are sensitive to small perturbations in the image, which are specially
crafted to deteriorate performance and to be mostly imperceptible for human observers.

One of the earliest and simplest adversarial attack methods is the Fast Gradient Sign Method (FGSM) [1]

Results on Googlenet +.007 x
. T+
€ sign(VzJ(0,2,y)) esign(VzJ (0, z, 7))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[1] Explaining and Harnessing Adversarial Examples; Goodfellow, Shlens, Szegedy; ICLR 2015
[2] Intriguing properties of neural networks; Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus; arXiv 2013
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Performance Degradation with the simple FGSM attack

B Accuracy ® FGSM
80.00%

60.00%
40.00%

20.00%

0.80%

8.20% 7.11%

0.00% 5.58%

AlexNet GoogleNet VGG19 ResNet50 ResNeXt50 DenseNet201 WideResNet50

Allowable perturbation magnitude € = 8/255, for images in range [0,1]
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Adversarial Machine Learning and Beyond (Recap)
https://www.youtube.com/watch?v=ylEE1HtGNJc

Adversarial Machine Learning and Beyond

Universal Adversarial Perturbations (UAPs)
are not bugs, they are features

Images

UAP  Adversarial Examples

Going beyond, using small perturbations for
steganography, watermarking, and light field messaging

Cover ImaT

Secret Image +
% || Encoder
Network
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Results presented in the proposal

An Alternative Perspective on UAPs . Data-free targeted UAPs
. 1 )
Previous Belief : New Perspective I Backpropagation )
. | T2
: Lw,3
: I Lz,
} A RS RS ; : Perturbation }
n e ==t : e= R Target Network
' | 1 ) L
Noise Noise Features 1 ! ' (Fixed) L
: : i der Logit Vector
. ) . . 1 Proxy Dataset
UAPs are features and images behave like noise to them | simple, Fast and Effective
———————————————————————————————————————————— i—————————————————————————————————————————
A Frequency Understanding on Targeted UAPs Towards Universal Deep Hiding
” Cover Images Container Image Revealed Secret Image
. Sensitive to

low-frequency content

Decoder
Network

DNN Sensitive to

high-frequency content Secret Perturbation

(Encoded Secret)

| | Encoder
| Network

Secret Image

In contrary to human, DNN is more sensitive to high-frequency content Steganography, Watermarking, and Light field messaging
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An Alternative Perspective on UAPs

Previous Belief : Our Perspective

| ise
Treat the DNN logits as a vector for feature representation and use them to analyze the mutual influence of two
independent inputs based on the Pearson correlation coefficient (PCC)

Features

“[ PCC:0.97 | “[ PCC:0.21 | cou(X.Y

S N . N | PCCxy = XY)

‘B g . B |l OxX0Oy

45 "

©c Z B ; =

© AWML - | e e 021 “Universal perturbations

c=a+b ° ke 2 T contain dominant features,

| PCC:0.06 | | PCC:0.95 | and images behave like

100 . 100

noise to them”

PLRR

PCC: 0.06] —50 & PCC: 0.95

0 La 20 ) Lb 50

PCC-Analysis result for one sample image lorikeet'. Three scenarios of input combinations are considered: 1: image + noise; 2: image + targeted

UAP; 3: image + targeted image-dependant AE. The columns show input a, input b, input c=a+b, logit vector analysis of L_c over L_a and vector
analysisof L_coverL b

P
p \ "
lorikeet (100.00%)

a c=a+tb

\

W gt |
sea lion (100.00%)

RCV Robotics and 11 KAIST
Computer Vision Lab :




Data-free Targeted UAPs

If images behave like noise to the features in UAPs, we can leverage a proxy
dataset to craft UAPs

Backpropagation Table 1: Comparison to other methods. The results are
L3 divided in universal attacks with access to the original
ImageNet training data (upper) and data-free methods
L, (lower). The metric is reported in the non-targeted fooling ratio
ImageNet ’ (%)
pretrained 1 L
} (ng 7t> Method AlexNet' GoogleNet VGG16 VGG19 ResNet152
| UAP [14] 93.3 789 783 778  84.0
| GAP [19] - 82.7 837 80.1 .
Target Network Ours(ImageNet [11]) 96.17 88.94 94.30 94.98 90.08
(Fixed) . FFF [18] 80.92  56.44 47.10 43.62 .
AAA [21] 89.04  75.28 7159 72.84  60.72
Logit Vector GD-UAP[17] 87.02 71.44  63.08 64.67 37.3
‘ Ours (COCO[12])  89.9 76.8 922 916  79.9
Proxy Dataset Ours (VOC [5]) 89.9 76.7 922 905  79.1

Ours (Places365 [29]) 90.0 76.4 92.1 91.5 78.0

Fast
Our algorithm takes ~2 minutes vs. ~2 hours
for the vanilla UAP algorithm
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A Frequency Understanding on Targeted UAPs

BW: 5 (FR: 14.5)

\

pinwheel

BW: 10 (FR: 39.2) BW: 20 (FR: 47.2) BW: 35 (FR: 56.0)
A % N

Human perception DNN perception

Clean Image (/)

Target DNN Garbage Truck

wine_bottle lacewing pinwheel brain_coral

Target DNN Red Panda

BW: 0 (FR: 94.4) BW: 60 (FR: 90.1) BW: 140 (FR: 85.0) : 180 (FR: 74.2) BW: 220 (FR: 70.0)

Target DNN Red Panda

Prturton P)

(Targeted) Universal Adversarial Attack

brain_coral brain_coral

lampshade

window_screen

Why does such small universal perturbation dominate images?
DNN is highly sensitive to high-frequency patterns
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Universal Deep Hiding (UDH)

A novel Deep Hiding meta-architecture to hide a secret image in a
cover-agnostic manner.

ﬂover image Sender Side / Receiver Side\

Container image Container image

Revealed secret image

Revealing
Network

Encoded secret image

Hiding
Network

e Comparable performance as DDH
/ e Facilitating visualization of how secret image is

encoded.

. J

A secret image is fed to the hiding network to yield an encoded secret image, which can be added to a random cover
image to form a container image. The revealing network then retrieves the secret image from the container.
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Universal Deep Hiding (UDH)

Cover
Rkt
H Perspectlve _’ R
Transform
Secret Secret Encoded Container Container Photo Container Photo Revealed Secret
Warped

Light field messaging

Steganography

a8 a1

e

Original ~ Identity = Dropout  Gaussian JPEG Original Identity Dropout Gaussian

Watermarking
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Adversarial Attacks
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Adversarial attack: Definition and Goal

Finding a Small perturbation that misclassifies a sample

C(zx +90) # C(z) Misclassification

subject to D(z,z+6) <e The perturbation is smaller than magnitude ¢

D is some distance metric L1, L2, Linf

z+6€[0,1] Obey image range

Untargeted scenario: Misclassify to any Targeted scenario: Misclassify to a predefined
other class target class (Cat for instance)

2l % e
oy, A Plane

> >—< : a |
o

Car
House
Bird |

Horse
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White-box Attacks

Black Grey White
© >
Low Adversary’s Knowledge High

e In white-box attack, an adversary has total knowledge about the model used for classification (e.g.,
type of neural network along with number of layers).

e The attacker has information about the algorithm used in training (e.g., gradient-descent
optimization) and can access the training data distribution. Also knows the parameters of the fully

trained model architecture.

e The adversary utilizes available information to identify the feature space where the model may be
vulnerable, i.e, for which the model has a high error rate. Then the adversary can make full use of

the network information to carefully craft adversarial examples.
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Black-Box Attacks

BANK OF NOISE
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e Black-Box attack, assumes no knowledge about the model and uses information about the settings
or past inputs to analyse the vulnerability of the model. For example, the adversary exploits a model
by providing a series of carefully crafted inputs and observing outputs.

e Based on whether an attacker needs to query the victim model, there are query-free (transfer-based)
and query-based attacks.

e Transferability is critical for Black-Box attacks where the victim model and the training data are not
accessible. Attackers can train a substitute (source) model and then generate adversarial examples
against substitute model. Then the victim model will be vulnerable to these adversarial examples
due to transferability.

RObOtiCS and Reference: Yuan, Xiaoyong, et al. "Adversarial examples: Attacks and defenses for deep learning." IEEE transactions on neural networks and learning systems 30.9 (2019): 2805-2824. 19 I(AI S I
Li, Huichen, et al. "QEBA: Query-Efficient Boundary-Based Blackbox Attack." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

Com pUter Vision Lab Picture Source: Rey Reza Wiyatno, Tricking a Machine into Thinking You’re Milla Jovovich, <https://medium.com/element-ai-research-lab/tricking-a-machine-into-thinking-youre-milla-jovovich-b1gbf322d55¢>



https://medium.com/@rey.wiyatno?source=post_page-----b19bf322d55c--------------------------------

Transferability of Adversarial Perturbations
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Transferable Adversarial Examples

Transferable Property (Model-agnostic) [1]
One perturbation generated on one network (source),
transfers to another unseen one (target)

White-box Scenario
Original Image Adversarial Example (AE)

Source
Model

Generation

Black-box Scenario
Adversarial Example (AE)

¥
Target Model “gibbon”

Transferable perturbations require no
access to the target model.

[1] Adversarial machine learning at scale; Kurakin, Goodfellow, Bengio; ICLR 2017
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Background: FGSM attack

Fast Gradient Sign Method (FGSM) [1]

Stepping one step of step size € into the gradient direction _ _
X = X + esign(Vx J(X, Yerue)) €: magnitude
Pro: Fast Con: Less effective L=CF
Fixed

Logit Vector

L

9

[1] Explaining and Harnessing Adversarial Examples; ICLR 2015

RCV Robotics and 22 I(AI ST
Computer Vision Lab




Background: I-FGSM attack

C Iterative FGSM (I-FGSM) ) | step size
lteratively apply FGSM with step size a a = ¢/T, where T
X8 = X, X2 = X0 4 asign(Vx J(X2, y)) !ndice_ltes total
\_ Pro: Effective Con: less transferable ) lterations

Fixed

|
l
1
Forward Pass

Logit Vector

L

sign(Vo L(0, 7, Ygt))
I
0 )

[1] Towards Deep Learning Models Resistant to Adversarial Attacks; ICLR 2018
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Popular techniques to increase transferability: MI-FGSM

Momentum Iterative Fast Gradient Sigh Method (MI-FGSM)

Use the momentum term to increase adversarial transferability

VXL(Xz?dU7 y)

g = Jigg "
t+1 — t .
T HVXL(deU, y)x\h u: Decay Factor
Xadv _ Xadv L . (V J(Xadv ))
t+1 t asign{v x t Y
| Attack Inc-v3 Inc-v4 | IncRes-v2 | Res-152 | Inc-v3ens3 | Inc-v3ens4 | IncRes-v2ens
FGSM 723" 28.2 26.2 25.3 11.3 10.9 4.8
Inc-v3 I-FGSM 100.0* 22.8 19.9 16.2 2.5 6.4 4.1
MI-FGSM 100.0* 48.8 48.0 35.6 151 15.2 7.8
FGSM 32.7 61.0* 26.6 27.2 13.7 11.9 6.2
Inc-v4 I-FGSM 35.8 99.9* 24.9 19.3 7.8 6.8 4.9
MI-FGSM 65.6 99.9* 54.9 46.3 19.8 17.4 9.6
FGSM 32.6 28.1 §5.8% 25.8 13.1 i 75
IncRes-v2 I-FGSM 37.8 20.8 99.6* 22.8 8.9 7.8 5.8
MI-FGSM 69.8 62.1 99.5* 50.6 26.1 20.9 15.7
FGSM 35.0 28.2 275 12.9* 14.6 13.2 1.3
Res-152 I-FGSM 26.7 227 21.2 98.6* 9.3 8.9 6.2
MI-FGSM 53.6 48.9 44.7 08.5* 221 21.7 12.9

The success rates (%) of non-targeted adversarial attacks against seven models

[1] Boosting Adversarial Attacks with Momentum; Dong, Liao, Pang, Su, Zhu, Hu, Li;CVPR 2018
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Popular techniques to increase transferability: DI2-FGSM
Diverse Inputs Iterative Fast Gradient Sign Method (DI>-FGSM)

Applies random and differentiable transformations Tr, e.g. random resizing, random padding to the input images

X = XY + asign(Vx J (Tr(X{%;p), )

Inception-v3 Inception-v4 Inception-Resnet-v2  Resnet-v2-152
o ‘walking stick B walkinb sk || T walking stick N walkihg éick
yellow lady-slipper mantis mantis vine snake
armadillo rapeseed pot pot
three-toed sloth capuchin green lizard mantis
green lizard | little blue heron yine snake pickgt fence N = 1 I" =0
‘‘‘‘‘ leopard | American alligator . walking stick ‘ . pot ‘ FG S M <: I = FG S M <: M I = F G S IVI
jaguar Komodo dragon pot red fox ‘
cheetah cat bear red fox American alligator ‘
snow leopard leopard cat bear cat bear ‘ _ 0 _ 0
Qiamondback rattlesnake ‘ bullfrog armadillo proboscis monkey p - p -
D Egyptian cat ‘ o 7‘American alligator I walking sjtick e wé|kihglgtick '
running shoe water snake pot vine snake — O
screwdriver ]—_'7 terrapin European gallinule pot D I 2_ FG S M 'u M - D I 2_ FG S M
snow leopard mud turtle green lizard mantis <:
nipple ‘ bullfrog vine snake green mamba
Egyptian cat ‘ o leopard || | lynx leopard
snow leopard jaguar leopard jaguar . . .
i s Eliptmca e Relationships between different attacks
cheetah tiger cat jaguar snow leopard ‘
leopard snow leopard cheetah black bear |

Comparison of success rates. The ground-truth “walking stick” is shown in pink. The W: Decay Factor
adversarial examples are crafted on Inception-v3. DI>-FGSM attacks the white-box N: # of Iterations

model and all black-box models successfully. p: Probability of transformation
[1] Improving Transferability of Adversarial Examples with Input Diversity; Xie, Zhang, Zhou, Bai, Wang, Ren, Yuille; CVPR 2019

R C V Robotics and 25 I(AI ST
Computer Vision Lab =




Popular techniques to increase transferability: TI-FGSM

Translation Invariant Fast Gradient Sign Method (TI-FGSM)

Optimizes a perturbation over an ensemble of translated images.
This method can be implemented by convolving the gradient at the untranslated image with a predefined kernel.

X;’f’f — Xf“d'” + asign(W x VXJ(Xtad"’, Y))

Raw Image FGSM TI-FGSM

[1] Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks; Dong, Pang, Su, Zhu; CVPR 2019

RCV Robotics and 26 KAIST
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On Strength and Transferability of Adversarial Examples: Stronger Attack

Transfers Better

Chaoning Zhang®, Philipp Benz®, Adil Karjauv®, In So Kweon
Korea Advanced Institute of Science and Technology (KAIST)

RobustML workshop paper at ICLR 2021
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Metric of Attack Strength (Transferability)

Conventional Attack Success Rate (ASR): Percentage of images being misclassified after attack
Drawback: Treating every misclassification equally.

GT class:

Swiss Greater mountain dog No Attack Weak attack Stronger attack

top 1 top 2 top 5

N i J
Ny

y

Equally treated in the
conventional ASR metric

Conventional ASR (ASR@1)
@ With the metric of ASR@k, a sample is successfully

attacked if and only if the GT class is ranked higher than k.
Proposed ASR@Kk

R C V Robotics and 28 I(AI ST
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Our Contributions

A unified simple metric to evaluate the
ASR@k strength and/or transferability

Interest Class Rank (ICR)

A new loss for boosting semantic adversarial strength
based on Geometry Perspective on loss design

RCE(X{",yg1) = CE(X{", ygr) — % Yy CE(X{™, yr)

(1,1,-2) xtyt+z=20

I I Class B Class A
(-1,2 2.-1,-1)
Interest class |:> () O ‘
sort 8
or 3
® —> & ®
=1 (2,1,1) 1,2, 1)
oQ
O | @
‘ % O |::> Rank: 5 (L:1.2* ClassC
O VIO
ICR attack strength is Transfer-based
transferable? stronger attack
RCV Robotics ant:i . 29 I(AI ST
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Logit Vector Gradient Derivative

We calculate the derivative of various common losses with respect to logit vector Z. Ygt is the
ground-truth one-hot vector and P indicates the post-softmax probability vector Y, indicates one-hot
label of the least likely class, and 7 = g Z(X*"); indicates the highest class except the gt class

+ytg =
Loss Type Logit vector gradient Sanlf gazlue1 5 (1,1,-2), xtytz=10
(xy.z)=(1,0.2,-1.2) Class B _— Class A
Cross Entropy (CE) 57 —P — Ygt (-0.36, 0.29, 0.07) 1.2, -1) T ‘ o O
L
Carlini & Wagner (CW) 0 8%W —Y, - Y, (-1.00, 1.00, 0.00)
91 (-2,1,1) 2,1)
E(LL
CE (LL: Least Likely) Caz< . P-Y;; (0.64, 0.29, -0.93)
L ] -1,-1,2)¥ Class C
RCE
Relative RCE (RCE) 97 - K Y (-0.66, 0.33, 0.33)
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Geometric illustration of the logit gradient with 3 classes

Given a logit vector (x, y, z), they can be represented in the

3-D space, assuming three logits are independent.

3-D space |Zero-sum:x+y+z=0

Gradient vector

Loss Type (x,y,2) = (1, 0.2, -1.2)

Cross Entropy (CE) (-0.36, 0.29, 0.07)
Carlini & Wagner (CW) (-1.00, 1.00, 0.00)
CE (LL: Least Likely) (0.64, 0.29, -0.93)

Relative RCE (RCE) (-0.66, 0.33, 0.33)

Robotics and
Computer Vision Lab

2-D hyperplane

Interest class: A

Class A: (2, -1, -1)
Class B: (-1, 2, -1)
Class C: (-1, -1, 2)

)

(1> ]., -2)1
Class B ac

RCE: find the opposite direction
to shift far from class A.

x+y+z = ()

Class A

y

Class C

2,-1,-1)

5 %2y 1)




Strongest White-box Attack with All Metrics

non-targeted Acc. ICR OLNR NLOR NRT  CosSim
CE 100.00 132,90 T12385 13932 279355 0.25
CW 100.00 39140 34994 21.01 257.22 0.40
LL 99.20 491.02 490.46 888.96 306.12 0.08
FDA 100.00 61990 608.84 517.28 311.49 0.06
RCE(Ours) 100.00 1000.00 979.63 57094 360.23 -0.21
RCE(LL) 100.00 687.36 688.72 996.32 354.58 -0.17

FDA[1] is the existing SOTA approach.

{ RCE loss achieves the strongest attack among all losses for all metrics except for NLOR with CE(LL). }

OLNR: Old Label New Ranking
NLOR: New Label Old Ranking

NRT: Normalized Rank Transformation
CosSim: Cosine Similarity

[1] FDA: Feature Disruptive Attack; Ganeshan, Vivek, Babu; CVPR 2019
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Computer Vision Lab

KAIST




ICR Results for Non-targeted and Targeted Attack

Non-targeted ICR: Targeted ICR:

higher is better lower is better

Table 4: Non-targeted ICR of I-FGSM (top), and Table 5: Targeted ICR of I-FGSM (Top), MI-DI-TI-
MI-DI-TI-FGSM (bOttOIl’l) attacks for source net- FGSM (bottom) for source network ResNet50.

work ResNet50. IRN50 DN121 VGG16bn RN152 MNv2 IncV3

BN-D | DNIZL VOGIcbn RN12, Mhys Jaeva CE |252 32073 35533 264.20 345.40 607.46

C(\LV ;2988 21?2 ig;‘; 2;‘;8 ‘35?? ;23 Po-Trip | 1.00 236.37 299.51 192.63 309.81 582.28

: 22 - 20 322 s)| 1. 13 208. 22 244, .

RCE (Ours) 1000.00 | 72.11  80.86 14481 7039 1335 BEE Q] 102 dol.1v 2050l MBZ2 20050

W 42749 | 7782 7713 8167 8488  39.03 CE | 1.00 22.19 4564 23.61 9272 245.79

CE 806.85 | 22087 21377  249.02 19396 89.93 Po-Trip | 1.00 13.84 4033  18.46 76.37 215.26

RCE (Ours) 99994 | 482.58 430.97 517.85 366.30 141.90 RCE (Ours)| 1.01 4.51 1.70 3.67 30.90 157.35

RCE loss outperforms other common losses in both non-targeted and targeted settings
with the ICR metric

RCV Robotics and 33 I(AI ST
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Towards Simple Yet Effective Transferable Targeted Adversarial Attacks

Philipp Benz', Chaoning Zhang®, Adil Karjauv, In So Kweon
Korea Advanced Institute of Science and Technology (KAIST)

RobustML workshop paper at ICLR 2021
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Techniques for Improving Transferability - Noise Augmentation

Two simple techniques to improve transferability

Input Noise Augmentation

Feature Noise Augmentation

RCV Robotics and 35 I(AI ST
Computer Vision Lab




Techniques for Improving Transferability - Push-Pull Loss

The targeted CE loss only maximizes the probability of the target class without explicitly
encouraging the sample to decrease the probability of the ground-truth class.

Conjecture: The effectiveness of adversarial examples can be increased by not only increasing the
logit of the target class but also decreasing the probability of the ground-truth class.

Push-Pull (PP) loss -- Combination of two CE losses:

® One for pushing the sample far from the ground-truth class (CEgt), i.e. non-targeted CE loss
® One for pulling the sample close to the target class (CEtar), i.e. targeted CE loss

PP(Zaygtv ytar) = OEta’r‘(Zaytar) - 50E9t(z7ygt)

Z: Output logit

Vi ground-truth one-hot label

Y., target one-hot label

B: balancing weight for the two CE losses

RCV Robotics and 36 KAIST
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Transfer-based attack in non-targeted setting

Performance evaluation in the non-targeted attack setting with a single substitute model, i.e. DenseNet121.
The results are reported in the ASR (%) for various baselines: MI, Tl, DI, MI-DI-TI. All experiments were

performed with the non-targeted CE loss

Substitute| FGSM variant | Attack | RN50 VGG16 DN201 MNv2 IncV3f|Avg.
CE 88.8 859 951 840 58.1824

CE+Iu, | 941 918 976 88.0 70.3|88.4

MI-FGSM CE+Fay, | 981 965 994 955 73.7[926

CE + Lnug+ Fiug| 982 975 995 963 83.0[94.9

CE 862 827 932 789 46.7|775

CE+Iu, | 908 877 963 828 593|834

T-FGaM CE+ Fay, | 962 933 985 928 654892

W CE + Laug + Fiug| 97.8 952 990 935 74.2[91.9
CE 963 963 981 917 62.1]3889

CE+ Iy, | 966 964 979 917 71.4[908

SRS CE+Fa,, | 989 985 994 O97.1 74.6]93.7

CE+ Laug + Faug| 986 984 990 968 78.1([942

CE 983 972 993 956 83.6(9438

CE+ i, | 982 977 99.1 963 86.895.6

MEDITEEGSMI - cpy py | 997 992 998 986 91.6(97.8

CE+ Laug + Faug| 9.5 994 997 99.0 91.6/97.8

Noise and Feature Augmentation as well as their combination improve adversarial transferability

Robotics and
Computer Vision Lab
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Transfer-based Targeted Attacks - Single Surrogate

Non-targeted ASR/targeted ASR for a targeted MI-DI-TI attack with a single substitute model (ResNet50) in
the targeted attack scenario.

Attack DNI121 VGGI6 RNI52 MNv2 IncV3 Avg.

CE 84.2/40.2 88.6/28.0 82.6/43.1 84.7/10.4 52.9/4.6 |78.6/25.3
Po-Trip 84.0/56.7 86.0/33.1 83.0/55.5 81.5/15.1 51.0/7.1|77.1/33.5

FDA®)+xent  90.9/57.9 88.8/43.5 89.7/51.6 86.4/22.9 - -

PP 97.6/73.1 97.8/62.5 98.2/78.2 95.0/28.5 71.8/10.8[92.1/50.6

PP + IAug 98.8/78.3 98.5/68.5 99.3/82.3 96.7/38.4 79.6/21.4|94.6/57.8
PP % Fjy, 99.8/87.6 99.7/82.6 99.8/90.5 97.7/56.0 80.1/28.7|95.4/69.1
PP + [pug + Faug 99.9/87.2 99.8/81.0 100.0/90.8 99.0/67.2 87.4/42.6|97.2/73.8

The Push-Pull Loss itself and in combination with noise and feature augmentation improve
adversarial transferability in the single surrogate scenario
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Transfer-based Targeted Attacks - Ensemble Surrogate

Non-targeted ASR/Targeted ASR for a targeted MI-DI-T| attack with an ensemble of two substitute models.

Source Attack VGG16 RN152 DN201 MNv2 IncV3 IncV4 IncRes Avg.
CE 93.9/54.9 91.1/68.5 95.4/86.2 90.8/24.4 64.7/15.6 66.5/14.2 49.6/8.3 | 78.86/39.0
RN50 Po-Trip 88.2/449  84.7/63.5 92.6/82.9 83.9/21.7 59.3/14.6 61.2/13.1 46.1/7.2 | 73.71/35.0
P PP 99.2/81.6  99.3/87.2 100.0/93.7 97.7/51.0 84.8/33.2 85.9/29.4 68.1/17.5] 90.71/56.0
DNI21 PP + [ Aug 09.8/82.2  99.8/90.7 100.0/94.3 98.8/61.2 90.8/50.4 91.9/45.0 78.9/33.0 | 94.29/65.0
PP + Fpug 100.0/92.4 100.0/94.3 100.0/95.3 99.9/81.6 94.2/63.9 94.6/62.9 81.5/41.4| 95.74/76.0
PP + I Aug + Faug | 100.0/90.9 100.0/94.3 100.0/94.6 99.9/85.3 97.8/74.2 97.3/73.0 88.6/55.0 | 97.66/81.0

The Push-Pull Loss itself and in combination with noise and feature augmentation improve
adversarial transferability in the ensemble surrogate scenario
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Robustness Comparison of Vision Transformer and
MLP-Mixer to CNNs

Philipp Benz*, Chaoning Zhang*, Soomin Ham*, Adil Karjauyv, In So Kweon
Korea Advanced Institute of Science and Technology (KAIST)

CVPR 2021 Workshop on Adversarial Machine Learning in
Real-World Computer Vision Systems and Online Challenges (AML-CV)
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Convolutional Neural Networks & Fully Connected Neural Networks

pooled Fully-connected 1

feature maps pooled  featuremaps  foatyre maps
feature maps O
I r [ I 4

r

CNOROXONOION)
[ X N J

Outputs
Input

Convolutional Pooling 1 Convolutional
layer 1 layer 2

Pooling 2 i

CNN

CNN is locally connected and sharing weights by convolving kernels.
- Consists of convolutional layers followed by pooling layer
- Shift-invariant

R ics an
ObOt ¢sa d ) Picture Source: Matthew Stewart, Simple-introduction-to-convolutional-neural-networks, <https://towardsdatascience.com> and
ristian wolf, what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it, <https://chriswolfvision.medium.com>
Computer Vision Lab Christian wolf. what-i lati ar dowhv-d luti it <https://chriswolfuisi B

FC

FC reacts differently to an input image and its shifted version.
- Ignores the information brought by pixel position and
correlation with neighbors.
- Cannot handle translation (shift-variant)

» KAIST
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Vision Transformers [1]

Vision Transformer splits the input image into and feeds the linear embedding
sequence of these patches as inputs to the Transformer|[2]. Image patches are
processed in the same way as token(word) in NLP applications.

Transformer Encoder
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Robotics and [1] Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020). 42 I(AI ST
Computer Vision Lab [2] Vaswani, Ashish, et al. "Attention is all you need." arXiv preprint arXiv:1706.03762 (2017).




MLP-Mixer [3]

Mixer architecture clearly separates the
cross-location (patch-mixing) operations. Both operations are implemented with MLPs.

RCV
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Overview

- Despite the success of CNNs, they remain vulnerable to adversarial examples whose small
additive perturbations of the input cause the CNN to misclassify a sample.

- Due to the rather recent introduction of the ViT and Mixer architecture, the adversarial
vulnerability of these novel architectures has not been well studied yet.

This work sets out to explore and analyze the adversarial vulnerability of ViT and
Mixer architectures and compare the findings against the CNN models.

RCV Robotics and s KAIST
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Methodology

® Models and Dataset
- ViT-B/16, ViT-L/16
- Mixer-B/16, Mixer-L/16
- ResNet18 (SWSL), ResNet50 (SWSL),
ResNet18 (SSL), ResNet50 (SSL),
ResNet18, ResNet50

e Test on NeurlPS 2017 adversarial challenge dataset
- ImageNet-compatible dataset composed of 1,000 images in 430 classes.

R C V Robotics and 45 I(AI ST
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Robustness Against White-Box Attacks

Attack Success Rate (ASR): Percentage of samples which were classified differently from the ground-truth class

Clean accuracy on NeurlIPS & ImageNet dataset, the attack success rate (%) of PGD and FGSM under |  distortion, and the |,-norm of C&W and DeepFool

Clean PGD (/) FGSM (/.) C&W (¢5) DeepFool (£5)

Model ImageNet NeurIPS | 0.1 03 0.5 | 3 0.1 03 05 | 3

ViT-B/16 81.4 90.7 | 22.6 63.6 [86.5] 975 99.9 | 19.1 38.7 [528] 663 79.7 0.468 0.425
ViT-L/16 82.9 893 | 228 60.1 180.9] 958 100 | 19.5 359 [449| 579 67.3 0.459 0.548
Mixer-B/16 76.5 86.2 |29.5] 63.4 182.0 962 100 [|27.7] 493 |59.5] 69.3 78.0 0.375 0.339
Mixer-L/16 71.8 80.0 ||41.1] 67.3 180.4] 92.1 994 ||36.7] 51.8 1569| 61.6 67.4 0.297 0.377
ResNet-18 (SWSL) 73.3 904 | 479 937 [98.7] 995 99.6 | 38.0 763 [89.9] 962 97.6 0.295 0.132
ResNet-50 (SWSL) 81.2 963 | 394 90.2 |97.0] 984 99.4 | 263 609 |73.0] 83.8 87.5 0.380 0.149
ResNet-18 (SSL) 72.6 905 | 423 932 |98.8] 998 99.8 | 34.3 75.1 |88.9| 96.6 97.9 0.312 0.142
ResNet-50 (SSL) 79.2 953 | 395 91.8 |97.6] 995 999 | 263 605 |75.2] 85.8 89.5 0.372 0.149
ResNet-18 69.8 83.7 | 46.1 90.0 197.8] 999 100 | 42.0 752 88.5] 95.7 98.2 0.302 0.237
ResNet-50 76.1 93.0 | 358 863 [97.9] 995 100 | 27.5 63.1 |77.6] 894 939 0.371 0.287

ViT & Mixer have a lower attack success rate compared with the CNN architecture

—VIiT & Mixer are more robust
Exception: Mixer model exhibits increased vulnerability to very small perturbations
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Robustness Against Black-Box Attacks
[d Query-based

Boundary Attack: A decision-based attack that starts from a large adversarial perturbation and then seeks to reduce the perturbation
while staying adversarial. [1]

We test 100 random samples from NeurlPS dataset, and the I12-norm of adversarial perturbation is presented

: : ; : RNIS RN50 RNI8 RNS50
ViT-B  ViT-L Mix-B Mix-L (SWSL) (SWSL) (SSL) (SSL) RNI8 RNS50

Boundary

(ls) 3980 7.408 1968 1.951 1.403 1.846 1.434 1.780 1.468 1.740
2

ViT and Mixer models are more robust, indicated by the relatively higher 12-norm of the
adversarial perturbation

R ‘ V Robotics and [1] Brendel et al.; Reliable attacks against black-box machine learning models; ICLR 2018 47 I(AI ST

Computer Vision Lab




Robustness Against Black-Box Attacks
[d Transfer-based

We report the attack success rate (%) and a model with a lower ASR is considered to be more robust.

Target model

Source model Variant ViT-B/16 ViT-L/16 Mixer-B/16 Mixer-L/16 ResNet-18 (SWSL) ResNet-50 (SWSL) ResNet-18 (SSL) ResNet-50 (SSL) ResNet-18 ResNet-50
ViT-B/16 I-FGSM 100 84.7 48.8 50.5 32.0 20.5 34.3 234 40.9 31.7
ViT-L/16 I-FGSM 90.9 99.9 45.7 48.0 30.4 22:2 344 23.6 40.8 30.9
Mixer-B/16 I-FGSM 33.9 25.3 100 89.1 30.6 20.5 34.5 23.3 40.8 32.0
Mixer-L/16 I-FGSM 27 20.1 I 80.3 99.7 I 27.7 17.0 31.5 17.5 38.2 28.4
ResNet-18 (SWSL) I-FGSM 16.2 13.6 24.8 29.5 ~00.0 57.1 80.2 58.0 /3.5 63.4
ResNet-50 (SWSL) [-FGSM 15.3 13.5 23.6 29.9 56.5 99.5 51.6 69.1 494 51.0
ResNet-18 (SSL) I-FGSM 17 13.7 28.6 34.4 84.4 54.6 99.9 65.4 78.2 66.8
ResNet-50 (SSL) I-FGSM 18.1 15.0 26.4 32.3 58.9 73.3 64.7 100 54.7 62.2
ResNet-18 I-FGSM 18.2 14.7 28.9 35.6 84.6 499 85.3 60.4 100 81.6
ResNet-50 [-FGSM 17.7 13.6 28.4 34.5 73.9 63.9 74.3 74.7 80.6 100

Adversarial examples from the same family (or similar structure) exhibit higher transferability, suggesting models from
the same family learn similar features.
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Toy Example

Binary classification: Horizontal and vertical black stripe on a black background

Images for the binary classification toy example

Train a Fully Connected network (FC), a Convolution Neural Network (CNN), and a Vision
Transformer (ViT) on the images of similar (small) capacity

Evaluation with the C&W and DDN attack for the models trained on the toy example
C&W (¢5) DDN (¢3) #params

CNN 12.55 13.91 4.59M
BCG 25.06 23:39 4.82M
ViT 27.82 59.99 4.83M

The CNN is also less robust than the FC and the ViT in this toy example setup
RCV Robotics and 1 KAIST
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Explanation from the perspective of shift-invariance

(a) CNN (b) FC (c) ViT
CW
Adversarial
examples
CW
Perturbations

Adversarial examples and perturbations generated against C&W attack using different architectures trained on toy example.

e VIiT: square patches — likely due to the division of the input image into patches in the ViT architecture
® CNN: repeated stripes
® FC: only asingle stripe in the center
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Explanation from the perspective of shift-invariance

(a) CNN (b) FC (c) ViT
CW
Adversarial
examples
CW
Perturbations

Adversarial examples and perturbations generated against C&W attack using different architectures trained on toy example.

Due to shift-invariance, CNN has perturbations all over the image (in the direction of the opposite class’ stripe),
and the other models have perturbations only in the middle part. — lower 12-norm refers to less robust

R C v Robotics and 51 I(AI ST
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Summary & Take Aways

e An empirical study on the adversarial robustness comparison of ViT and MLP-Mixer to the widely used
CNN on image classification.

- White-box adversarial attack

- Black-box adversarial attack (query-based and transfer-based)
- Toy example on binary classification

- Frequency Analysis

e ViT is significantly more robust than CNN, and Mixer is generally located between ViT and CNN.

e The lower robustness of CNN can be partially attributed to the shift-invariant property of CNNs.
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