Revisiting Batch Normalization for Improving Corruption Robustness

Abstract

The performance of DNNs trained on clean images has been shown to decrease when the test images have common corruptions. In this work, we interpret corruption robustness as a domain shift and propose to rectify batch normalization (BN) statistics for improving model robustness. This is motivated by perceiving the shift from the clean domain to the corruption domain as a style shift that is represented by the BN statistics. We find that simply estimating and adapting the BN statistics on a few (32 for instance) representation samples, without retraining the model, improves the corruption robustness by a large margin on several benchmark datasets with a wide range of model architectures. For example, on ImageNet-C, statistics adaptation improves the top1 accuracy of ResNet50 from 39.2% to 48.7%. Moreover, we find that this technique can further improve state-of-the-art robust models from 58.1% to 63.3%.

Publication
In The IEEE Winter Conference on Applications of Computer Vision (WACV 2021)
Philipp Benz
Philipp Benz
Ph.D. Candidate @ Robotics and Computer Vision Lab, KAIST

My research interest is in Deep Learning with a focus on robustness and security.

Related